精英家教网 > 高中数学 > 题目详情
15.已知三棱锥的四个面中,最多共有(  )个直角三角形?
A.4B.3C.2D.1

分析 一个三棱锥V-ABC中,侧棱VA⊥底面ABC,并且△ABC中∠B是直角,则可知三棱锥四个面都是直角三角形,从而可得结论

解答 解:如果一个三棱锥V-ABC中,侧棱VA⊥底面ABC,并且△ABC中∠B是直角.
因为BC垂直于VA的射影AB,所以VA垂直于平面ABC的斜线VB,
所以∠VBC是直角.
由VA⊥底面ABC,所以∠VAB,∠VAC都是直角.
因此三棱锥的四个面中∠ABC;∠VAB;∠VAC;∠VBC都是直角.
所以三棱锥最多四个面都是直角三角形.
故选:A

点评 本题重点考查线面垂直的判定与性质,考查学生的探究能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图所示,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,左焦点为F,A、B、C为其三个顶点,直线CF与AB交于D点,则tan∠ADF的值等于(  )
A.3$\sqrt{3}$B.-3$\sqrt{3}$C.$\frac{\sqrt{3}}{5}$D.-$\frac{\sqrt{3}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形,则直线PC与平面ABCD所成角的正切值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知中心在原点的椭圆与双曲线有公共焦点,左,右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则e1•e2+1的取值范围是(  )
A.(1,+∞)B.$(\frac{8}{3},+∞)$C.$(\frac{4}{3},+∞)$D.$(\frac{10}{9},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命题p:“m∈A”;命题q:“m∈B”.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题“p∨q”和“p∧q”中恰有一个真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)已知函数f(x)对任意的x,y∈R均有f(x+y)=f(x)•f(y),$f(1)=\frac{1}{2}$.bn=an•f(n),n∈N*,求f(n)的表达式并证明:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线方程为y2=4x,直线L过定点P(-2,1),斜率为k,k为何值时,直线L与抛物线y2=4x只有一个公共点;有两个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A是抛物线$y=\frac{1}{4}{x^2}$的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上,且满足|PF|=m|PA|,当M取得最小值时,点P恰好在以A,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.$y=\sqrt{x^2}$和$y=\root{3}{x^3}$B.y=|1-x|和$y=\sqrt{{{({x-1})}^2}}$
C.$y=\frac{{{x^2}-1}}{x-1}$和y=x+1D.y=x0和y=1

查看答案和解析>>

同步练习册答案