精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax2+bxx+1
,曲线y=f(x)在点(1,f(1))处的切线方程是5x-4y+1=0.
(Ⅰ)求a,b的值;
(Ⅱ)设g(x)=2ln(x+1)-mf(x),若当x∈[0,+∞)时,恒有g(x)≤0,求m的取值范围.
分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线方程是5x-4y+1=0,建立方程组,即可求a,b的值;
(Ⅱ)由(Ⅰ)知:f(x)=
x2+x
x+1
g(x)=2ln(x+1)-m
x2+2x
x+1
(x>-1)
,求导函数,构建新函数h(x)=-mx2+(2-2m)x+2-2m,分类讨论,确定g(x)在[0,+∞)上的单调性,即可得到结论.
解答:解:(Ⅰ)求导函数,可得f′(x)=
(2ax+b)(x+1)-(ax2+bx)
(x+1)2

∵曲线y=f(x)在点(1,f(1))处的切线方程是5x-4y+1=0.
f(1)=
3
2
f′(1)=
5
4
,∴
a+b
2
=
3
2
3a+b
4
=
5
4
,∴
a=1
b=2
 
-------(4分)
(Ⅱ)由(Ⅰ)知:f(x)=
x2+2x
x+1
,∴g(x)=2ln(x+1)-m
x2+2x
x+1
(x>-1)
,则g′(x)=
-mx2+(2-2m)x+2-2m
(x+1)2
,--------------------------(6分)
令h(x)=-mx2+(2-2m)x+2-2m,
当m=0时,h(x)=2x+2,在x∈[0,+∞)时,h(x)>0,∴g′(x)>0,即g(x)在[0,+∞)上是增函数,则g(x)≥g(0)=0,不满足题设.
当m<0时,∵-
2-2m
-2m
=
1
m
-1<0
且h(0)=2-2m>0
∴x∈[0,+∞)时,h(x)>0,g′(x)>0,即g(x)在[0,+∞)上是增函数,则g(x)≥g(0)=0,不满足题设.-----------------(8分)
当0<m<1时,则△=(2-2m)2+4m(2=2m)=4(1-m2)>0,
由h(x)=0得x1=
1-m-
1-m2
m
<0
x2=
1-m+
1-m2
m
>0

则x∈[0,x2)时,h(x)>0,g′(x)>0即g(x)在[0,x2)上是增函数,则g(x2)≥g(0)=0,不满足题设.-----------(10分)
当m≥1时,△=(2-2m)2+4m(2=2m)=4(1-m2)≤0,h(x)≤0,g′(x)≤0,即g(x)在[0,+∞)上是减函数,则g(x)≤g(0)=0,满足题设.
综上所述,m∈[1,+∞)-------------------------------------------------(12分)
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查分类讨论的数学思想,正确求导,合理分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案