精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足:对任意x、y∈R都有f(x)+f(y)=f( x+y).
(1)求证:函数f(x)是奇函数;
(2)如果当x∈(-∞,0)时,有f(x)>0,求证:f(x)在(-1,1)上是单调递减函数;
(3)在满足条件(2)求不等式f(1-2a)+f(4-a2)>0的a的集合.
分析:(1)由奇函数的定义知,需要证明出f(-x)=-f(x),观察恒等式发现若令y=-x,则问题迎刃而解;
(2)由题设条件对任意x1、x2在所给区间内比较f(x1)-f(x2)与0的大小即可.
(3)根据奇函数把不等式变形,再根据单调性转化不等式的解之即可.
解答:(1)、证明:令x=y=0,代入f(x+y)=f(x)+f(y)式,
得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入f(x+y)=f(x)+f(y),
得 f(x-x)=f(x)+f(-x),又f(0)=0,则有
0=f(x)+f(-x).
即f(-x)=-f(x)对任意x∈R成立,
所以f(x)是奇函数.
(2)、任取-1<x1<x2<1,则x1-x2<0,
由题设x<0时,f(x)>0,可得f(x1-x2)>0
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)>0
故有f(x1)>f(x2
所以f(x)在(-1,1)上是单调递减函数.
(3)、任取x1<x2,则x1-x2<0,
由题设x<0时,f(x)>0,可得f(x1-x2)>0
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)>0
故有f(x1)>f(x2
所以f(x)在R上是单调递减函数.
由题意可知:f(x)奇函数,f(1-2a)+f(4-a2)>0
所以f(1-2a)>f(a2-4)
又因为f(x)在R上是单调递减函数.
所以1-2a<a2-4,
解得:(-∞,-1-
6
)∪(-1+
6
,+∞)
点评:本题考点是抽象函数及其应用,考查用赋值法求函数值证明函数的奇偶性,以及灵活利用所给的恒等式证明函数的单调性,利用函数的奇偶性和单调性解抽象不等式.
此类题要求答题者有较高的数学思辨能力,能从所给的条件中组织出证明问题的组合来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案