精英家教网 > 高中数学 > 题目详情
(本小题满分12分)   
如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)试确定点的位置,使得平面
(Ⅲ)当中点时,求二面角的余弦值.
(Ⅰ)见解析;(Ⅱ);(Ⅲ)
(I)可以先证明平面,再证明即可.
(II)连接CM,若平面,平面平面,∴,从而可根据平行线分线段成比例定理,可确定点M的位置.
(III)不难找出二面角的平面角为,然后解三角形MON求角即可.
(Ⅰ)连结,∵平面平面,∴
又∵
平面
又∵分别是的中点,∴
平面,又平面
∴平面平面;---------------------------------------4分
(Ⅱ)连结

平面,平面平面,∴
,故  ----------------------------6分
(Ⅲ)∵平面平面,∴
在等腰三角形中,点的中点,∴
为所求二面角的平面角, ---------------------------------8分
∵点的中点,∴
所以在矩形中,可求得,----------10分
中,由余弦定理可求得
∴二面角的余弦值为. ------------------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图:四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPA=AB=1,AD=,点FPB的中点,点E在边BC上移动.

(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BEBCFCE的中点,求证:
(1) AE∥平面BDF
(2) 平面BDF⊥平面BCE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.

(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PAk·AB,且二面角E-BD-C的平面角大于,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知正四棱锥的底面边长为中点.

(Ⅰ)求证://平面
(Ⅱ)若是二面角的平面角,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.

(I)求证平面ACD⊥平面BCD;
(II)求证:AD//平面CEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图已知直角梯形所在的平面垂直于平面
(I)在直线上是否存在一点,使得平面?请证明你的结论;
(II)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面∥平面外一点,过点的直线分别交于,过点的直线分别交于,则的长为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

线段AB,CD在两条异面直线上,M,N分别是AB,CD的中点,则一定有(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案