精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且 成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为Tn , 求证:Tn<1.

【答案】
(1)解:设{an}的公差为d.

因为 成等比数列,所以

化简得 ,即d2=a1d.

又a1=1,且d≠0,解得d=1.

所以有an=a1+(n﹣1)d=n.


(2)解:由(1)得:

所以

因此,Tn<1


【解析】(1)利用已知列出关于工程师了公差方程求出公差;得到通项公式;(2)利用(1)的结论,将通项公式代入,利用裂项求和证明即可.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用 (单位:万元)和利润 (单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

请回答:

(Ⅰ)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(Ⅱ)根据1的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到).

附参考公式:回归方程中最小二乘估计分别为,,

相关系数.

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数

求函数的单调减区间;

若关于的方程有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是无穷数列,满足lgan+1=|lgan﹣lgan1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求证:“数列{an}中存在ak(k∈N*)使得lgak=0”是“数列{an}中有无数多项是1”的充要条件;
(3)求证:在数列{an}中ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题:函数上单调递减,命题:对任意实数,不等式恒成立.

(1)写出命题的否定,并求非为真时,实数的取值范围;

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=

(1)求sin∠DBC;
(2)求AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

中,内角对边的边长分别是,已知

的面积等于,求

,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣,0)和B(,0),动点C到A、B两点的距离之差的绝对值为2.

(1)求点C的轨迹方程;

(2)点C的轨迹与经过点(2,0)且斜率为1的直线交于D、E两点,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案