精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲:
设函数f(x)=
|ax-2|+|ax-a|-2
(a∈R)

(1)当a=1时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.
分析:(1)由题设知:|x-2|+|x-1|-2≥0,由此能求出a=1时,函数f(x)的定义域.
(2)由题设知,当x∈R时,恒有|ax-2|+|ax-a|-2≥0,即|ax-2|+|ax-a|≥2恒成立,由此能求出a的取值范围.
解答:解:(1)由题设知:|x-2|+|x-1|-2≥0等价于:
x≤1
-x+2-x+1-2≥0
⇒x≤
1
2

1<x<2
-x+2+x-1-2≥0
⇒x∈∅,
x≥2
x-2+x-1-2≥0
⇒x≥
5
2

综上所述,当a=1时,函数f(x)的定义域为(-∞,
1
2
]∪[
5
2
,+∞).
(2)由题设知,当x∈R时,恒有|ax-2|+|ax-a|-2≥0,
即|ax-2|+|ax-a|≥2恒成立,
∵|ax-2|+|ax-a|≥|(ax-2)-(ax-a)|=|a-2|,
∴只需|a-2|≥2,
解得a≤0,或a≥4.
点评:本题考查函数的定义域及其求法,解题时要认真审题,仔细解答,注意含绝对值不等式的性质及其应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案