精英家教网 > 高中数学 > 题目详情
5.已知在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ+sinθ}\\{y=\sqrt{3}sinθ-cosθ}\end{array}\right.$(θ为参数),在以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线C2:ρsin($θ+\frac{π}{6}$)=1.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)曲线C1上恰好存在三个不同的点到曲线C2的距离相等,分别求这三个点的极坐标.

分析 (1)曲线C1:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ+sinθ}\\{y=\sqrt{3}sinθ-cosθ}\end{array}\right.$(θ为参数),两式平方相加可得直角坐标方程;曲线C2:ρsin($θ+\frac{π}{6}$)=1,展开可得:$\frac{\sqrt{3}}{2}ρsinθ$+$\frac{1}{2}ρcosθ$=1,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可化为直角坐标方程.
(2)原点O到直线C2:$\sqrt{3}y+x-2$=0的距离d=1=$\frac{1}{2}$r,直线$\sqrt{3}$y+x=0与圆的两个交点A,B满足条件.联立$\left\{\begin{array}{l}{\sqrt{3}y+x=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解出利用$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,分别化为极坐标A,B.
设与直线:$\sqrt{3}y+x-2$=0平行且与圆相切的直线方程为:$\sqrt{3}$y+x+m=0,(m<0).与圆的方程联立化为:4y2+2$\sqrt{3}$my+m2-4=0,令△=0,解得m,即可得出.

解答 解:(1)曲线C1:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ+sinθ}\\{y=\sqrt{3}sinθ-cosθ}\end{array}\right.$(θ为参数),两式平方相加可得:x2+y2=4,
曲线C2:ρsin($θ+\frac{π}{6}$)=1,展开可得:$\frac{\sqrt{3}}{2}ρsinθ$+$\frac{1}{2}ρcosθ$=1,化为直角坐标方程:$\sqrt{3}y+x-2$=0.
(2)原点O到直线C2:$\sqrt{3}y+x-2$=0的距离d=$\frac{|0-2|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=1=$\frac{1}{2}$r,
直线$\sqrt{3}$y+x=0与圆的两个交点A,B满足条件.
联立$\left\{\begin{array}{l}{\sqrt{3}y+x=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$,
利用$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,分别化为极坐标A$(2,\frac{5π}{6})$,B$(2,\frac{11π}{6})$.
设与直线:$\sqrt{3}y+x-2$=0平行且与圆相切的直线方程为:$\sqrt{3}$y+x+m=0,(m<0).
联立$\left\{\begin{array}{l}{\sqrt{3}y+x+m=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,化为:4y2+2$\sqrt{3}$my+m2-4=0,
令△=12m2-16(m2-4)=0,解得m=-4.
∴$(y-\sqrt{3})^{2}$=0,
解得y=$\sqrt{3}$,x=1.
∴切点C$(1,\sqrt{3})$,化为极坐标C$(2,\frac{π}{3})$.
∴满足条件的这三个点的极坐标分别为:极坐标A$(2,\frac{5π}{6})$,B$(2,\frac{11π}{6})$,C$(2,\frac{π}{3})$.

点评 本题考查了极坐标方程化为直角坐标方程、圆的标准方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ln|x|-cosx,则f(-3),f($\frac{π}{2}$),f(π)的大小关系是(  )
A.f($\frac{π}{2}$)<f(-3)<f(π)B.f($\frac{π}{2}$)<f(π)<f(-3)C.f(-3)<f($\frac{π}{2}$)<f(π)D.f(-3)<f(π)<f($\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α终边上点的坐标(6,8),求sinα、cosα、tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若角A是锐角,那么角A的余弦值是(  )
A.大于零B.小于零C.等于零D.都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x2-4x+y2+6y+$\sqrt{z-2}$+13=0,则(xy)2=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x∈Z||x-1|<1},则A的子集个数共有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},观察程序框图,若k=5时,分别有S=25.
(1)试求数列{an}的通项;
(2)令bn=2${\;}^{{a}_{n}}$,求{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:如图①,直线y=-$\sqrt{3}$x+$\sqrt{3}$与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止,如图②);对称轴过点A且顶点为M的抛物线y=a(x-k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG,设D、E的运动速度分别是1个单位长度/秒和$\sqrt{3}$个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)为奇函数,当x>0时,f(x)=-6x+2x,则f(f(-1))=-8.

查看答案和解析>>

同步练习册答案