精英家教网 > 高中数学 > 题目详情
19.已知Sn为等比数列{an}的前n项和,且S5=S4-2a4,则$\frac{{S}_{5}}{{S}_{4}}$等于(  )
A.-$\frac{33}{15}$B.$\frac{33}{15}$C.-$\frac{33}{17}$D.$\frac{33}{17}$

分析 利用等比数列的通项公式及其求和公式及其性质即可得出.

解答 解:∵S5=S4-2a4,∴a5=-2a4,解得公比q=-2.
∴$\frac{{S}_{5}}{{S}_{4}}$=$\frac{{q}^{5}-1}{{q}^{4}-1}$=$\frac{-{2}^{5}-1}{{2}^{4}-1}$=-$\frac{33}{15}$.
故选:A.

点评 本题考查了等比数列的通项公式及其求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.某几何体的三视图如图所示,则该几何体的外接球表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计如表:
年份2011年2012年2013年2014年2015年
水上狂欢节届编号 12345
外地游客人数 (单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(2)利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客到柳州的人数.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若${S}_{△ABC}=3{S}_{△BC{F}_{2}}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的接法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2016这2016个数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{an},则此数列的项数为135.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA=AC,PA⊥平面ABCD.
(Ⅰ)点E在棱PC上,试确定点E的位置,使得PD⊥平面ABE;
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{x-1}+\frac{1}{3-x}$的定义域是{x|x≥1且x≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点$A(-\sqrt{3},0)$和$B(\sqrt{3},0)$,动点C引A、B两点的距离之和为4.
(1)求点C的轨迹方程;
(2)点C的轨迹与直线y=x-2交于D、E两点,求弦DE的长.

查看答案和解析>>

同步练习册答案