精英家教网 > 高中数学 > 题目详情
16.(1)化简$\frac{sin(2π-α)cos(π+α)}{cos(α-π)cos(\frac{π}{2}-α)}$
(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

分析 (1)原式利用诱导公式化简,约分即可得到结果;
(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanx的值代入计算即可求出值.

解答 解:(1)原式=$\frac{-sinα(-cosα)}{-cosαsinα}$=-1;
(2)∵tanx=2,
∴原式=$\frac{2sinxcosx-sinxcosx+co{s}^{2}x-si{n}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{sinxcosx+co{s}^{2}x-si{n}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{tanx+1-ta{n}^{2}x}{ta{n}^{2}x+1}$=$\frac{2+1-4}{4+1}$=-$\frac{1}{5}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知一个袋内有4只不同的红球,6只不同的白球.
(1)从中任取4只球,红球的只数不比白球少的取法有多少种?
(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?
(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn+$\frac{1}{3}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设($\frac{1}{4}$)${\;}^{{b}_{n}}$=1-Sn+1,(n∈N*),${T_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn>$\frac{1007}{2016}$成立的最小的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC为锐角三角形,则下列式子一定成立的是(  )
A.logcosC$\frac{sinA}{cosB}$>0B.logsinC$\frac{cosA}{cosB}$>0
C.logsinC$\frac{sinA}{sinB}$>0D.logsinC$\frac{cosA}{sinB}$>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数y=$\sqrt{3}$sin2x-cos2x的图象向右平移$\frac{π}{4}$个单位长度,所得图象对应的函数为g(x),以下选项正确的是(  )
A.有最大值,最大值为$\sqrt{3}$+1B.对称轴方程是x=$\frac{7π}{12}$+kπ,k∈Z
C.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增D.是周期函数,周期T=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(${\frac{1}{1+x}}$)=x,则函数f(x)=$\frac{1-x}{x},\{x|x≠0\}$(注明f(x)的定义域)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是等差数列,且a1+a4+a7=2π,则tan(a2+a6)的值为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义平面向量之间的一种运算(?)如下:对任意的$\overrightarrow a=(m,n),\overrightarrow b=(p,q)$,令$\overrightarrow a?\overrightarrow b=mq-np$,下面说法正确的序号为①③④.(把所有正确命题的序号都写上)
①若$\overrightarrow a,\overrightarrow b$共线,则$\overrightarrow a?\overrightarrow b=0$
②$\overrightarrow a?\overrightarrow b=\overrightarrow b?\overrightarrow a$
③对任意的$λ∈R,有(λ\overrightarrow a)?\overrightarrow b=λ(\overrightarrow a?\overrightarrow b)$
④${(\overrightarrow a?\overrightarrow b)^2}+{(\overrightarrow a•\overrightarrow b)^2}=|\overrightarrow a{|^2}|\overrightarrow b{|^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数a,b满足①b≥a2-4a;②b≤$\sqrt{4a-{a}^{2}}$;③(|a-2|+|b|-2)(|a-2|+|b|-3)≤0 这三个条件,则|a-b-6|的范围是(  )
A.[1,4+2$\sqrt{2}$]B.[$\frac{3}{2}$,7]C.[$\frac{3}{2}$,4+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,7]

查看答案和解析>>

同步练习册答案