精英家教网 > 高中数学 > 题目详情
化简、求值:80.25×
42
+(
32
×
3
6+log32×log2(log327).
分析:结合有理数指数幂与根式的转化关系,及对数的运算性质和指数的运算性质,分别求出每一项的值,即可得到答案.
解答:解:80.25×
42
+(
32
×
3
6+log32×log2(log327).
=2
3
4
×2
1
4
+22×33+1

=2+4×27+1
=111
点评:本题考查的知识点是有理数指数幂的化简求值,对数的运算性质,其中熟练掌握有理数指数幂与根式的转化关系,将根式转化为有理数指数幂是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简或求值:
(1)2(
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
-
42
×80.25+(-2005)0

(2)
lg5•lg8000+(lg2
3
)
2
lg600-
1
2
lg0.36

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80千米,请你根据图象回答下面的问题:

(1)谁出发的较早?早多少时间?谁到达乙地较早?早到多长时间?

(2)两人在途中行驶的速度分别是多少?

(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);

(4)指出在什么时间内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):

①自行车行驶在摩托车前面;

②自行车与摩托车相遇;

③自行车行驶在摩托车后面.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80千米,请你根据图象回答下面的问题:

(1)谁出发的较早?早多少时间?谁到达乙地较早?早到多长时间?

(2)两人在途中行驶的速度分别是多少?

(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围)

(4)指出在什么时间内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解)

①自行车行驶在摩托车前面;

②自行车与摩托车相遇;

③自行车行驶在摩托车后面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

化简或求值:
(1)2(
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
-
42
×80.25+(-2005)0

(2)
lg5•lg8000+(lg2
3
)
2
lg600-
1
2
lg0.36

查看答案和解析>>

同步练习册答案