精英家教网 > 高中数学 > 题目详情
6.已知△ABC三个顶点的坐标分别为A(-2,3),B(1,2),C(5,4),求:
(1)向量$\overrightarrow{BA}$与向量$\overrightarrow{BC}$的坐标;
(2)角B的大小.

分析 (1)根据向量的坐标运算法则计算即可,
(2)根据向量的数量积公式,即可求出B的值.

解答 解:(1)A(-2,3),B(1,2),C(5,4),
∴$\overrightarrow{BA}$=(-2,3)-(1,2)=(-3,1),
$\overrightarrow{BC}$=(5,4)-(1,2)=(4,2),
(2)cosB=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|\overrightarrow{BC}|}$=$\frac{-3×4+1×2}{\sqrt{(-3)^{2}+{1}^{2}}\sqrt{{4}^{2}+{2}^{2}}}$=-$\frac{\sqrt{2}}{2}$,
∴B=135°

点评 本题考查了向量的坐标运算和数量积公式,考查了运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.f(x)是定义域为R的偶函数,f′(x)为f(x)的导函数,当x≤0时,恒有f(x)+xf′(x)<0,设g(x)=xf(x),则满足g(2x-1)<g(3)的实数x的取值范围是(  )
A.(2,+∞)B.(-1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A是椭圆的一个短轴顶点,B,C均为椭圆上的点,△ABC为以A为直角顶点的等腰三角形,这样的三角形有三个,则椭圆离心率的范围($\frac{\sqrt{6}}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(1)=f(5),则抛物线y=ax2+bx+c的对称轴是x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将四封不同的信装进写好地址的四个信封,则恰好只有一封信装错信封的概率是0;恰好有两封信装错信封的概率是$\frac{1}{4}$;(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=$\frac{{e}^{-x}}{a}$+$\frac{a}{{e}^{-x}}$(a∈R,a≠0)是定义在R上的函数
(1)判断并证明函数f(x)的奇偶性;
(2)当a=1时,判断并明f(x)在区间(0,+∞)上的单调性.
(3)当a=1时,若k2-k≤f(x)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+sin(α+β)+cos(α+β)=$\sqrt{3}$,β∈[$\frac{π}{4}$,π],求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某种型号的电子管的寿命X(以小时计)具有以下概率密度;
f(x)=$\left\{\begin{array}{l}{1000/{x}^{2}}&{x>1000}\\{0}&{其它}\end{array}\right.$,现有一大批此种管子(设各电子管损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$后函数图象关于原点对称.

查看答案和解析>>

同步练习册答案