A. | 4π | B. | 12π | C. | 16π | D. | 36π |
分析 证明AC⊥AB,可得△ABC的外接圆的半径为$\sqrt{3}$,利用△ABC和△DBC所在平面相互垂直,球心在BC边的高上,设球心到平面ABC的距离为h,则h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,求出球的半径,即可求出球O的表面积.
解答 解:∵AB=3,AC=$\sqrt{3}$,BC=2$\sqrt{3}$,
∴AB2+AC2=BC2,
∴AC⊥AB,
∴△ABC的外接圆的半径为$\sqrt{3}$,
∵△ABC和△DBC所在平面相互垂直,
∴球心在BC边的高上,
设球心到平面ABC的距离为h,则h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,
∴h=1,R=2,
∴球O的表面积为4πR2=16π.
故选:C.
点评 本题考查球O的表面积,考查学生的计算能力,确定球的半径是关键.
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,-$\frac{1}{2}$] | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com