精英家教网 > 高中数学 > 题目详情

【题目】某景区修建一栋复古建筑,其窗户设计如图所示的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交( 为其中两个交点)图中阴影部分为不透光区域,其余部分为透光区域已知圆的半径为1m透光区域的面积为

1关于的函数关系式,并求出定义域

2)根据设计要求,透光区域与矩形窗面的面积比值越大越好当该比值最大时求边的长度

【答案】1)(2

【解析】试题分析: 根据题意表示出所需的线段长度,再分别求三角形和扇形面积,从而表示出总面积,再根据题意要求求出函数的定义域;根据题意表示出“透光比”函数,借助求导,研究函数单调性求出最大值.

试题解析:1)过点于点,则

所以

所以

因为,所以,所以定义域为

2矩形窗面的面积为

则透光区域与矩形窗面的面积比值为…10

因为,所以,所以,故

所以函数上单调减

所以当时, 有最大值,此时 (m)

答:(1关于的函数关系式为,定义域为

2透光区域与矩形窗面的面积比值最大时, 的长度为1m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.
(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;
(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面与等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M为线段AE的中点.
(Ⅰ) 证明:BM⊥平面AEC;
(Ⅱ) 求MC与平面DEC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是边长为1的正方形,PA⊥平面ABCD,N是PC的中点.
(Ⅰ)若PA=1,求二面角B﹣PC﹣D的大小;
(Ⅱ)求AN与平面PCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为A1 , A2 , A3 , 乙协会编号为A4 , 丙协会编号分别为A5 , A6 , 若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下.则下面结论中错误的一个是(

A.甲的极差是29
B.乙的众数是21
C.甲罚球命中率比乙高
D.甲的中位数是24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

同步练习册答案