【题目】已知函数f(x)=log4(ax2+2x+3).
(1)若f(x)定义域为R,求a的取值范围;
(2)若f(1)=1,求f(x)的单调区间;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
【答案】(1) ; (2)单调递增区间是,单调递减区间是; (3).
【解析】
(1)因为f(x)的定义域为R,所以ax2+2x+3>0对任意x∈R恒成立.
显然a=0时不合题意,从而必有 解之即可.
(2)由f(1)=1,可得f(x)=log4(-x2+2x+3).求出定义域,利用复合函数单调性判断f(x)的单调区间;
(3) 假设存在实数a使f(x)的最小值为0,则h(x)=ax2+2x+3应有最小值1,由此可求a的值.
(1)因为f(x)的定义域为R,所以ax2+2x+3>0对任意x∈R恒成立.
显然a=0时不合题意,从而必有即
解得a>.
即a的取值范围是.
(2)因为f(1)=1,所以log4(a+5)=1,因此a+5=4,a=-1,这时f(x)=log4(-x2+2x+3).
由-x2+2x+3>0得-1<x<3,即函数定义域为(-1,3).
令g(x)=-x2+2x+3,则g(x)在(-1,1)上单调递增,在(1,3)上单调递减.又y=log4x在(0,+∞)上单调递增,所以f(x)的单调递增区间是(-1,1),单调递减区间是(1,3).
(3)假设存在实数a使f(x)的最小值为0,则h(x)=ax2+2x+3应有最小值1,
因此应有解得a=.
故存在实数a=使f(x)的最小值为0.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上有两定点A、B,该平面上一动点P与两定点A、B的连线的斜率乘积等于常数,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.
(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件 | 方程 |
① 周长为 | |
②面积为 | |
③中, |
则满足条件①,②,③的轨迹方程依次为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com