【题目】如图,在几何体中,,,平面平面,,,,为的中点.
(Ⅰ)证明:平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:
(Ⅰ)取中点,连接,,由几何关系可证得四边形是平行四边形,则,结合线面平行的判断定理可得平面;
(Ⅱ)结合几何关系,以,,所在直线为,,轴建立空间直角坐标系,由题意可得直线AB的方向向量为,设平面的法向量为,则直线与平面所成角的正弦值为.
试题解析:
(Ⅰ)取中点,连接,,
又∵为的中点,,,
∴,且,
∴四边形是平行四边形,
∴,
而且平面,平面,
∴平面;
(Ⅱ)∵,平面平面,且交于,
∴平面,
由(Ⅰ)知,∴平面,
又∵,为中点,
∴,
如图,以,,所在直线为,,轴建立空间直角坐标系,
则,,,,
∴,,,
设平面的法向量为,则
,即,
令,得,
∴直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2) 已知点的极坐标为,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,求曲线在点处的切线;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位现需要将“先进个人”,“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( )
A. 120种 B. 150种 C. 114种 D. 118种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的单调区间;
(2)当时,若函数在上的最小值为0,求的值;
(3)当时,若函数在上既有最大值又有最小值,且恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4,坐标系与参数方程】
在直角坐标系中,直线的参数方程为(t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(Ⅰ)求直线的普通方程与曲线C的直角坐标方程;
(Ⅱ)若直线与轴的交点为P,直线与曲线C的交点为A,B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求的方程;
(2)是否存在直线与相交于两点,且满足:①与(为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,等腰梯形中,,是的中点.将沿折起后如图2,使二面角成直二面角,设是的中点,是棱的中
点.
(1)求证:;
(2)求证:平面平面;
(3)判断能否垂直于平面,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com