精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P($\frac{4}{3}$,$\frac{1}{3}$),椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1.

分析 利用椭圆的定义求出a,从而可得b,即可求出椭圆C的方程.

解答 解:∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P($\frac{4}{3}$,$\frac{1}{3}$),
∴2a=|PF1|+|PF2|=2$\sqrt{2}$.
∴a=$\sqrt{2}$.
又由已知c=1,∴b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1.
故答案为:$\frac{{x}^{2}}{2}$+y2=1.

点评 本题考查椭圆的标准方程与性质,正确运用椭圆的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=log2x+log22(2x2)的值域是(  )
A.(-∞,0]B.[4,+∞)C.[0,4]D.[-$\frac{9}{16}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线y=2x-alnx(a<2)的-条切线l与直线y=x-5平行,且两直线距离为3$\sqrt{2}$,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,以第 ①个等腰直角三角形的斜边作为第 ②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边作为第 ③个等腰直角三角形的腰,依此类推,若第 ⑨个等腰直角三角形的斜边长为$16\sqrt{3}$厘米,则第 ①个等腰直角三角形的斜边长为$\sqrt{3}$厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=x+\frac{1}{4(x-2)}-1(x>2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=m-$\frac{2}{{{5^x}+1}}$
(1)判断并证明函数f(x)的单调性;
(2)若f(x)是奇函数,求m的值;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)求证:C${\;}_{n}^{m}$=$\frac{m+1}{n+1}$C${\;}_{n+1}^{m+1}$;
(2)求和:C${\;}_{n}^{1}$+22C${\;}_{n}^{2}$+32C${\;}_{n}^{3}$+…+k2C${\;}_{n}^{k}$+…+n2C${\;}_{n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.指数函数f(x)=ax(a>0,a≠1)的图象经过点(2,16),则实数a的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合U={0,1,2,3},A={x|x2-x=0},则∁UA={2,3}.

查看答案和解析>>

同步练习册答案