精英家教网 > 高中数学 > 题目详情

【题目】函数 的定义域为(﹣∞,+∞),则实数a的取值范围是(
A.(﹣∞,+∞)
B.[0,
C.( ,+∞)
D.[0, ]

【答案】B
【解析】解:因为f(x)的定义域为R又f(x)有意义需ax2+4ax+3≠0
所以ax2+4ax+3=0无解
当a=0是方程无解,符合题意
当a≠0时△=16a2﹣12a<0且解得 0<a<
综上所述0≤a<
故选B
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若上单调递减,求的取值范围;

(Ⅱ)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数的最小值为1.

(1)求的值;

(2)若,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的左右焦点F1、F2 , 离心率为 ,双曲线方程为 =1(a>0,b>0),直线x=2与双曲线的交点为A、B,且|AB|=
(Ⅰ)求椭圆与双曲线的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,交双曲线与P、Q两点,当△F1MN(F1为椭圆的左焦点)的内切圆的面积取最大值时,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,点为抛物线上的动点, 为坐标原点,线段的中点的轨迹为曲线.

(1)求抛物线的方程;

(2)点是曲线上的点,过点作圆的两条切线,分别与轴交于两点.

面积的最小值.

查看答案和解析>>

同步练习册答案