在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
(1);(2).
解析试题分析:(1)由题意知知|QF|=|QP|,所以|QE|+|QF|=|QE|+|QP|=|EP|=>|EF|=2,由椭圆定义法知,Q点的轨迹是以E,F为焦点实轴长的椭圆,求出,写出点Q的轨迹方程;(2)设出M、N点坐标和直线MN方程,代入曲线T的方程,整理成关于x的二次方程,利用根与系数关系将,用参数表示出来,利用判别式大于0列出关于参数的不等式,再利用题中的向量条件用参数把P点坐标表示出来,代入曲线T的方程,得出关于参数的等式,代入判别式得到关于的不等式,求出的范围.
试题解析:(1)点在线段的垂直平分线上,则,又,
则,故可得点的轨迹方程为.
(2)令经过点的直线为,则的斜率存在,设直线的方程为,
将其代入椭圆方程整理可得
设,则,故
(1)当时,点关于原点对称,则
(2)当时,点不关于原点对称,则
由,得,故
则,因为在椭圆上,故
化简,得,又,故得 ①
又,得 ②
联立①②两式及,得,故且
综上(1)(2)两种情况,得实数的取值范围是.
考点:1.椭圆定义与标准方程;2.直线与椭圆的位置关系;3.运算求解能力.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知、、是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且,.
(1)求椭圆的方程;
(2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由;
(3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为、,,若直线 在轴、轴上的截距分别为、,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C:的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.
(1)若点P的坐标,求m的值;
(2)若椭圆C上存在点M,使得,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,右焦点为(,0).
(1)求椭圆的方程;
(2)若过原点作两条互相垂直的射线,与椭圆交于,两点,求证:点到直线的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(为坐标原点),当时,求实数的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.
(1)若AB=,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com