精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.

(1)BC⊥PC;(2).

解析试题分析:(1)要证线线垂直,要从线面垂直角度入手,根据题中所给条件易知BC⊥平面PDC,而PC在平面PDC,从而能够证明出BC⊥PC. (2)要求点到面的距离,常用到等体积定理,由已知条件可知
VA-PBC=VP-ABC ,而通过计算可知VP-ABCSABC·PD=,接下来只需要求出△PBC的面积,这样根据SPBC·h=,∴h=,所以点A到平面PBC的距离为.
试题解析:(1)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC.
由∠BCD=90°知,BC⊥DC,
∵PD∩DC=D,∴BC⊥平面PDC,
∴BC⊥PC.
(2)设点A到平面PBC的距离为h,
∵AB∥DC,∠BCD=90°,∴∠ABC=90°,
∵AB=2,BC=1,∴SABCAB·BC=1,
∵PD⊥平面ABCD,PD=1,
∴VP-ABCSABC·PD=
∵PD⊥平面ABCD,∴PD⊥DC,
∵PD=DC=1,∴PC=
∵PC⊥BC,BC=1,
∴SPBCPC·BC=
∵VA-PBC=VP-ABC
SPBC·h=,∴h=
∴点A到平面PBC的距离为.
考点:1.线线垂直的证明;2.点到面的距离的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,斜四棱柱的底面是矩形,平面⊥平面分别为的中点.

求证:
(1);(2)∥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是边长为2的正三角形,若平面,平面平面,,且

(Ⅰ)求证://平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,,,侧面为等边三角形

(1)证明:
(2)求AB与平面SBC所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.

(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.

查看答案和解析>>

同步练习册答案