精英家教网 > 高中数学 > 题目详情

【题目】光线从点射出,到轴上的点后,被轴反射到轴上的点,又被轴反射,这时反射线恰好过点.

1)求所在直线的方程;

2)过点且斜率为的直线轴分别交于,过作直线的垂线,垂足为,求线段长度的最小值.

【答案】1;(2.

【解析】

1)根据光线的反射原理,点关于轴对称点以及点关于轴对称点均在在直线上,即可求解;

(2)先求出直线的点斜式方程,进而得到坐标,根据已知可得为两平行线的距离,求出直线方程,得到两平行线的距离,利用基本不等式即可求解.

1)点关于轴对称为

关于轴对称点为

直线经过两点,

故直线

为所求的直线方程.

2)设的方程为

,令

.

从而可得直线的方程分别为

为两平行线的距离,

,∴.

当且仅当等号成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某电视娱乐节目的游戏活动中,每人需完成A、B、C三个项目.已知选手甲完成A、B、C三个项目的概率分别为.每个项目之间相互独立.

(1)选手甲对A、B、C三个项目各做一次,求甲至少完成一个项目的概率.

(2)该活动要求项目A、B 各做两次,项目C做三次.若两次项目A均完成,则进行项目B,并获得积分a;两次项目B均完成,则进行项目C,并获积分3a;三次项目C只要两次成功,则该选手闯关成功并获积分6a(积分不累计),且每个项目之间互相独立.用X表示选手甲所获积分的数值,写出X的分布列并求数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育公司对最近6个月内的市场占有率进行了统计,结果如表:

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场,两款车各100辆的资料如表:

平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?

参考数据:

参考公式:相关系数

回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a>0a≠1).

(1)f(x)为定义域上的增函数,求实数a的取值范围;

(2)a=e,设函数,g(x1)+g(x2)=0,求证:x1+x2≥2+.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.

(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;

(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BPy轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:

交付金额(元)

支付方式

大于2000

仅使用

18

9

3

仅使用

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月两种支付方式都使用的概率;

(Ⅱ)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在一个周期内的图象如下图所示.

1)求函数的解析式;

2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列满足:

1)求数列的通项公式;

2)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列满足,若存在两项,使得,则的最小值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案