【题目】光线从点射出,到轴上的点后,被轴反射到轴上的点,又被轴反射,这时反射线恰好过点.
(1)求所在直线的方程;
(2)过点且斜率为的直线与,轴分别交于、,过、作直线的垂线,垂足为、,求线段长度的最小值.
科目:高中数学 来源: 题型:
【题目】在某电视娱乐节目的游戏活动中,每人需完成A、B、C三个项目.已知选手甲完成A、B、C三个项目的概率分别为、、.每个项目之间相互独立.
(1)选手甲对A、B、C三个项目各做一次,求甲至少完成一个项目的概率.
(2)该活动要求项目A、B 各做两次,项目C做三次.若两次项目A均完成,则进行项目B,并获得积分a;两次项目B均完成,则进行项目C,并获积分3a;三次项目C只要两次成功,则该选手闯关成功并获积分6a(积分不累计),且每个项目之间互相独立.用X表示选手甲所获积分的数值,写出X的分布列并求数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某体育公司对最近6个月内的市场占有率进行了统计,结果如表:
(1)可用线性回归模型拟合与之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;
(2)公司决定再采购,两款车扩大市场,,两款车各100辆的资料如表:
平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?
参考数据:,,,.
参考公式:相关系数;
回归直线方程,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(a>0且a≠1).
(1)若f(x)为定义域上的增函数,求实数a的取值范围;
(2)令a=e,设函数,且g(x1)+g(x2)=0,求证:x1+x2≥2+.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.
(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;
(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月,两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | 大于2000 | ||
仅使用 | 18人 | 9人 | 3人 |
仅使用 | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月,两种支付方式都使用的概率;
(Ⅱ)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com