精英家教网 > 高中数学 > 题目详情
若正整数,则称a1×a2×…×an为N的一个“分解积”.
(Ⅰ)当N分别等于6,7,8时,写出N的一个分解积,使其值最大;
(Ⅱ)当正整数N(N≥2)的分解积最大时,证明:中2的个数不超过2;
(Ⅲ)对任意给定的正整数N(N≥2),求出ak(k=1,2,…,n),使得N的分解积最大.
【答案】分析:(I)将6,7,8分别进行分解,然后写出它们的一个分解积,使其值最大即可;
(II)由(Ⅰ)可知,ak(k=1,2,…,n)中可以有2个2,当ak(k=1,2,…,n)有3个或3个以上的2时,可举反例说明,从而证得结论;
(Ⅲ)讨论ak(k=1,2,…,n)中有1,有2,有4的个数,以及有大于4的数,从而得到ak(k=1,2,…,n)中只能出现2或3或4,且2不能超过2个,4不能超过1个,从而可得ak(k=1,2,…,n),使得N的分解积最大.
解答:解:(Ⅰ)6=3+3,分解积的最大值为3×3=9;                  …(1分)
7=3+2+2=3+4,分解积的最大值为3×2×2=3×4=12;  …(2分)
8=3+3+2,分解积的最大值为3×3×2=18.               …(3分)
(Ⅱ)证明:由(Ⅰ)可知,ak(k=1,2,…,n)中可以有2个2.       …(4分)
当ak(k=1,2,…,n)有3个或3个以上的2时,
因为2+2+2=3+3,且2×2×2<3×3,
所以,此时分解积不是最大的.
因此,中至多有2个2.                          …(7分)
(Ⅲ)解:①当ak(k=1,2,…,n)中有1时,
因为1+ai=(ai+1),且1×ai<ai+1,
所以,此时分解积不是最大,可以将1加到其他加数中,使得分解积变大.…(8分)
②由(Ⅱ)可知,ak(k=1,2,…,n)中至多有2个2.
③当ak(k=1,2,…,n)中有4时,
若将4分解为1+3,由 ①可知分解积不会最大;
若将4分解为2+2,则分解积相同;
若有两个4,因为4+4=3+3+2,且4×4<3×3×2,所以将4+4改写为3+3+2,使得分解积更大.
因此,ak(k=1,2,…,n)中至多有1个4,而且可以写成2+2. …(10分)
④当ak(k=1,2,…,n)中有大于4的数时,不妨设ai>4,
因为ai<2(ai-2),
所以将ai分解为2+(ai-2)会使得分解积更大.              …(11分)
综上所述,ak(k=1,2,…,n)中只能出现2或3或4,且2不能超过2个,4不能超过1个.
于是,当N=3m(m∈N*)时,使得分解积最大; …(12分)
当N=3m+1(m∈N*)时,使得分解积最大;                …(13分)
当N=3m+2(m∈N)时,使得分解积最大.…(14分)
点评:本题主要考查了数列的综合应用,同时考查了分类讨论的数学思想,以及计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

14、对于各数互不相等的整数数组(i1,i2,…,in)(n是不小于2的正整数),如果在p<q时,有ip>iq,则称ip与iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”.例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其“逆序数”等于4.若各数互不相等的正整数数组(a1,a2,a3,a4,a5,a6,a7,a8)的“逆序数”是2,则(a8,a7,a6,a5,a4,a3,a2)的“逆序数”至少是
26

查看答案和解析>>

科目:高中数学 来源: 题型:

若有穷数列a1,a2,a3,…,an(n是正整数),满足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的对称数列,使得1,2,22…2m-1成为数列中连续的前m项,则数列{bn}的前2013项和S2013所有可能的取值的序号为(  )
①22013-1
②2(22013-1)
③2m+1-22m-2013-1
④3•2m-1-22m-2014-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)已知数列{an}有a1?a,a2?p (常数p>0),对任意的正整数n,Sn?a1a2…an,并有Sn满足Sn=
n(an-a1)
2

(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且
lim
n→∞
bn=b
,则称b为数列{bn}的“上渐进值”,求数列
an-1
an+1
的“上渐进值”.

查看答案和解析>>

同步练习册答案