精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x+lg(x-2)的零点所在区间为(  )
A.(2,2.0001)B.(2.0001,2.001)C.(2.001,2.01)D.(2.01,3)

分析 由函数零点的存在性定理,结合答案直接代入计算取两端点函数值异号的即可.

解答 解:f(2.001)=2.001+lg(2.001-2)=2.001-3<0,f(2.01)=2.001+lg(2.01-2)=2.01-2>0,
由函数零点的存在性定理,函数ff(x)=x+lg(x-2)的零点所在的区间为(2.001,2.01)
故选:C

点评 本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“
$\frac{周实际回收水费}{周投入成本}$”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:
第一周第二周第三周第四周
第一个周期95%98%92%88%
第二个周期94%94%83%80%
(Ⅰ)计算表1中八周水站诚信度的平均数$\overline{x}$
(Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率;
(Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:
第一周第二周第三周第四周
第三个周期85%92%95%96%
请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,E,F两点的坐标分别为(1,0)、(-1,0),动点G满足:直线GE与直线FG的斜率之积为-4.动点G的轨迹与过点C(0,-1)且斜率为k的直线交于A,B两点.
(Ⅰ)求动点G的轨迹方程;
(Ⅱ)若线段AB中点的横坐标为4 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A作直线交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且$\overrightarrow{PQ}$=2$\overrightarrow{QA}$,则椭圆的离心率是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x-y+2=0与直线y=kx+1平行,则实数k的值为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数满足在定义域上为减函数且为奇函数的是(  )
A.y=cos2xB.y=lg|x|C.y=-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“-1≤x≤2”是“x2-x-2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.冲要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(-1,-2).求
(1)($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$);
(2)|$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为(  )
A.9:4B.4:3C.3:1D.3:2

查看答案和解析>>

同步练习册答案