精英家教网 > 高中数学 > 题目详情
1.设a,b为实数,若复数$\frac{1+2i}{a+bi}=1+i$,则a-b=(  )
A.-2B.-1C.1D.2

分析 化简复数,利用复数相等的充要条件,求出a,b即可.

解答 解:$a+bi=\frac{1+2i}{1+i}=\frac{3}{2}+\frac{1}{2}i$,因此$a=\frac{3}{2},b=\frac{1}{2}$.a-b=1.
故选:C.

点评 本题考查复数的代数形式的混合运算,复数相等的充要条件的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.“lnx<1”是“x<e”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用诱导公式求下列三角函数值(可用计算器):
(1)cos$\frac{65}{6}$π;
(2)sin(-$\frac{31}{4}$π);
(3)sin670°39′;
(4)tan(-$\frac{26π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定积分$\int_0^1{({2x-{e^x}})dx}$的值为2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\sqrt{3}$sin(x+φ)-cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移$\frac{π}{8}$个单位得到函数g(x),则g(x)的解析式可以是(  )
A.$g(x)=2sin(2x-\frac{π}{4})$B.$g(x)=2sin(2x-\frac{π}{8})$C.$g(x)=2sin(\frac{1}{2}x-\frac{π}{4})$D.$g(x)=2sin(\frac{1}{2}x-\frac{π}{16})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数$f(x)=\frac{x}{(x-2)(x+a)}$是奇函数,则a=(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合$A=\{x|a-1<x<3a+2\},B=\{x|\frac{1}{4}<{2^{x-1}}<4\}$.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线方程为y2=8x,
(1)直线l过抛物线的焦点F,且垂直于x轴,l与抛物线交于A,B两点,求AB的长度.
(2)直线l1过抛物线的焦点F,且倾斜角为45°,直线l1与抛物线相交于C,D两点,O为原点.求△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{1}{x-1}$≥-1的解集为(  )
A.(-∞,0]∪(1,+∞)B.(-∞,0)∪[1,+∞)C.(0,1]D.[0,1)

查看答案和解析>>

同步练习册答案