精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

【答案】12 3

【解析】

1)通过,求出,利用,可得出函数的对称轴为,即可求,进而得到函数的解析式;

2)求出函数的对称轴,然后求解,列出关系式,即可求解实数的取值范围;

3)将代入,的两个零点分别在区间,利用零点存在定理列出不等式组求解,即可求得实数的取值范围.

1 ,

根据的对称轴为

可得的对称轴为

是二次函数

根据二次函数的对称轴为

解析式为: .

2

对称轴为

关于 的不等式有解,

所以实数的取值范围是:.

3

代入,

要保证的两个零点分别在区间内则保证:

化简可得: 解得:

所以实数的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,分别是的中点,分别是的中点,将四边形分别沿折起,使平面平面,平面平面,如图2所示,上一点,且.

(1)求证:

(2)线段上是否存在点,使得?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数,其中常数.

1)求在区间上的最小值(用表示);

2)解不等式

3)若对任意恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的离心率为,右准线方程为

求椭圆C的标准方程;

已知斜率存在且不为0的直线l与椭圆C交于AB两点,且点A在第三象限内为椭圆C的上顶点,记直线MAMB的斜率分别为

若直线l经过原点,且,求点A的坐标;

若直线l过点,试探究是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n-1(n∈N*).

(1)求数列{an}的通项公式;

(2)bn=log4an+1,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在之间为“体质优秀”,在之间为“体质良好”,在之间为“体质合格”,在之间为“体质不合格”现从两个年级中各随机抽取8名学生,测试成绩如下:

学生编号

1

2

3

4

5

6

7

8

高一年级

60

85

55

80

65

90

90

75

高二年级

75

85

65

90

75

60

a

b

其中ab是正整数.

(1)若该校高一年级有200名学生,试估计高一年级“体质优秀”的学生人数;

(2)从高一年级抽取的学生中再随机选取3人,求这3人中,恰有1人“体质良好”的概率;

(3)设两个年级被抽取学生的测试成绩的平均数相等,当高二年被抽取学生的测试成绩的方差最小时,写出ab的值结论不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题是真命题的是(  )

A. φ∈R,函数f(x)=sin(2xφ)都不是偶函数

B. αβ∈R,使cos(αβ)=cosα+cosβ

C. 向量a=(2,1),b=(-1,0),则ab的方向上的投影为2

D. “|x|≤1”是“x≤1”的既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点

)求证:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,若ADBC,则AB2BD·BC;类似地有命题:在三棱锥ABCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有SSBCM·SBCD.上述命题是 (  )

A. 真命题

B. 增加条件“ABAC”才是真命题

C. 增加条件“M为△BCD的垂心”才是真命题

D. 增加条件“三棱锥ABCD是正三棱锥”才是真命题

查看答案和解析>>

同步练习册答案