精英家教网 > 高中数学 > 题目详情
连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为α,求α∈(0,
π2
]的概率.
分析:向量表示错误,请给修改.
解答:解:由题意并根据两个向量的夹角公式可得cosα=
a
b
|
a
|•|
b
|
=
m-n
2
m2+n2
≥0,∴m-n≥0.
由于所有的(m,n)共有6×6=36个,而满足 m-n≥0的(m,n)共有 1+2+3+4+5+6=21个,
故cosα≥0的概率为
21
36
=
7
12
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.             B.               C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )
A.
11
36
B.
1
6
C.
1
4
D.
7
36

查看答案和解析>>

科目:高中数学 来源:《第3章 概率》2013年单元测试卷(解析版) 题型:选择题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.              B.              C.            D.

查看答案和解析>>

同步练习册答案