精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

(1) 连结AC,交BDO利用中位线定理证明,结合线面平行的判定定理证明即可;

(2)建立空间直角坐标系,利用坐标求出平面PAB和平面PBC的法向量,即可求解.

1

连结AC,交BDO连接MO由于底面ABCD为菱形,OAC中点

M的中点,,又

平面

2)过,垂足为,由于为正三角形,的中点.由于侧面,由面面垂直的性质得

,得

E为坐标原点,EP轴,EA轴,EBy轴,建立空间直角坐标系.

设平面PAB的法向量为,平面PBC的法向量为

,取,得平面PAB的一个法向量为

同理可求得平面PBC的一个法向量,由法向量的方向得知

所求二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.

1)求曲线的方程;

2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在轴上,且过点,直线与椭圆交于两点(两点不是左右顶点),若直线的斜率为时,弦的中点在直线.

1)求椭圆的方程;

2)若在椭圆上有相异的两点三点不共线),为坐标原点,且直线,直线,直线的斜率满足,求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题,其中正确命题的个数为(

①命题,使得的否定是,均有

②若正整数满足,则

③在 的充要条件;

④一条光线经过点,射在直线上,反射后穿过点,则入射光线所在直线的方程为

⑤已知的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则为定值.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一幅壁画的最高点处离地面米,最低点处离地面.正对壁画的是一条坡度为的甬道(坡度指斜坡与水平面所成角的正切值),若从离斜坡地面米的处观赏它.

1)若对墙的投影(即过的垂线垂足为投影)恰在线段(包括端点)上,求点离墙的水平距离的范围;

2)在(1)的条件下,当点离墙的水平距离为多少时,视角)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个如图的框架(单位:米).要求所围成的总面积为19.5(),其中是一个矩形, 是一个等腰梯形,梯形高,设米, 米.

(1)求关于的表达式;

(2)如何设计的长度,才能使所用材料最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1,在RtABC中,∠ACB=30°,∠ABC=90°DAC中点,AEBDE,延长AEBCF,将ABD沿BD折起,使平面ABD平面BCD,如图2所示。

(Ⅰ)求证:AE平面BCD

(Ⅱ)求二面角A-DC-B的余弦值;

(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有两个不同的实数解,则b的取值范围是_____

查看答案和解析>>

同步练习册答案