精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68


(1)求回归直线方程 = x+ ,其中 =﹣20, =
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)

【答案】
(1)解: = (8+8.2+8.4+8.6+8.8+9)=8.5,

= (90+84+83+80+75+68)=80;

∵y= x+ =﹣20

∴80=﹣20×8.5+

=250

=﹣20x+250.


(2)解:设工厂获得的利润为L元,则

L=x(﹣20x+250)﹣4(﹣20x+250)=﹣20 +361.25,

∴该产品的单价应定为 元时,工厂获得的利润最大.


【解析】(1)利用回归直线过样本的中心点( ),即可求出回归直线方程;(2)设工厂获得利润为L元,利用利润=销售收入﹣成本,建立函数关系,用配方法求出工厂获得的最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解不等式: ≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x﹣2)<0的实数x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且2Sn=(an﹣1)(an+2),
(1)求数列{an}的通项公式
(2)设数列{ }的前n项和为Tn , 试比较Tn 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象经过下列哪种变换可以得到函数y=cos2x的图象(
A.先向左平移 个单位,然后再沿x轴将横坐标压缩到原来的 倍(纵坐标不变)
B.先向左平移 个单位,然后再沿x轴将横坐标伸长到原来的2倍(纵坐标不变)
C.先向左平移 个单位,然后再沿x轴将横坐标压缩到原来的 倍(纵坐标不变)
D.先向左平移 个单位,然后再沿x轴将横坐标伸长到原来的2倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}和等比数列{bn}中.已知a1=b1=1.a2=b2 . a6=b3
(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式组 表示的平面区域为D,若(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是(
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)

查看答案和解析>>

同步练习册答案