精英家教网 > 高中数学 > 题目详情
如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.
(1)证明见解析;(2)λ的值等于1或4.

试题分析:(1)取AD的中点M,连接MH,MG,由G、H、F分别是AE、BC、BE的中点,得MH∥GF,G、F、H、M四点共面,又MG∥DE,所以DE∥平面MGFH;(2)在平面ABE内过A作AB的垂线,记为AP,则AP⊥平面ABCD.以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,建立建立空间直角坐标系A﹣xyz,如图所示.可得坐标,利用空间向量的坐标运算求出平面PBD的一个法向量=(5﹣2λ,,2,再由图可知平面ABP的一个法向量为,由cos<>==得λ=1或4.
解:(1)证明:取AD的中点M,连接MH,MG.
∵G、H、F分别是AE、BC、BE的中点,
∴MH∥AB,GF∥AB,
∴MH∥GF,即G、F、H、M四点共面,平面FGH即平面MGFH,
又∵△ADE中,MG是中位线,∴MG∥DE
∵DE?平面MGFH,MG?平面MGFH,
∴DE∥平面MGFH,即直线DE与平面FGH平行.
(2)在平面ABE内,过A作AB的垂线,记为AP,则AP⊥平面ABCD.
以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,
建立建立空间直角坐标系A﹣xyz,如图所示.
可得A(0,0,0),B(0,4,0),D(0,0,2),E(2,﹣2,0),G(,﹣1,0),F(,1,0)
=(0,2,0),=(0,﹣4,2),=(,﹣5,0).
=(0,2λ,0),可得=+=(,2λ﹣5,0).
设平面PBD的法向量为=(x,y,z),
,取y=,得z=2,x=5﹣2λ,
=(5﹣2λ,,2),
又∵平面ABP的一个法向量为=(0,0,1),
∴cos<>===cos=,解之得λ=1或4
即λ的值等于1或4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知空间两点A(1,2,3),B(2,-1,1)则A,B两点间的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点,则异面直线C1D与A1C所成角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为(   )
A.①和②B.③和①C.④和③D.④和②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是(  )
A.a,a+b,a-bB.b,a+b,a-b
C.c,a+b,a-bD.a+b,a-b,a+2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.

查看答案和解析>>

同步练习册答案