精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(1)求f[f(0)+4]的值;
(2)求证:f(x)在R上是增函数.

分析 (1)根据题意,由函数的解析式可得f(0)的值,即可得f(0)+4的值,进而代入函数解析式计算可得f[f(0)+4]的值;
(2)由作差法证明:设x1,x2∈R且x1<x2,化简并分析f(x1)-f(x2)的符号,即可得证明.

解答 解:(1)根据题意,函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,
则f(0)=$\frac{{2}^{0}-1}{{2}^{0}+1}$=0,∴f[f(0)+4]=f(4)=$\frac{{2}^{4}-1}{{2}^{4}+1}$=$\frac{15}{17}$.
(2)证明 设x1,x2∈R且x1<x2,则${2^{x_2}}$>${2^{x_1}}$>0,${2^{x_2}}$-${2^{x_1}}$>0,
f(x1)-f(x2)=($\frac{{2}^{{x}_{1}}-1}{{2}^{{x}_{1}}+1}$)-($\frac{{2}^{{x}_{2}}-1}{{2}^{{x}_{2}}+1}$)=-$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$<0,
即f(x1)<f(x2),所以f(x)在R上是增函数.

点评 本题考查函数单调性的判定、证明,关键是掌握定义法证明函数单调性的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A-C=$\frac{π}{3}$,则sinB的值为$\frac{\sqrt{39}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的x等于(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(1,-1)$,则$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$sin(θ+\frac{π}{3})=\frac{2}{3}$,则$cos(θ-\frac{π}{6})$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对函数f(x)=$\left\{\begin{array}{l}{-x+1,x>0}\\{-x-1,x≤0}\end{array}\right.$性质,下列叙述正确为(  )
A.奇函数B.减函数
C.既是奇函数又是减函数D.不是奇函数也不是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在一段时间内,某种商品的价格x(元)和需求量y(件)之间的一组数据如表所示:
价格x/元1416182022
需求量y/件56503137
(1)求出y关于x的线性回归方程;
(2)请用R2和残差图说明回归方程拟合效果的好坏.
参考数据:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
参考数据:$\sum_{i=1}^5{x_i^2=1660}$,$\sum_{i=1}^5{{x_i}{y_i}}$=3992.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某几何体的三视图,则其体积是(  )
A.8B.$\frac{8}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案