精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=$\frac{3}{4}$${\overrightarrow{BC}}^{2}$,则$\frac{tanB}{tanC}$=7.

分析 根据向量的运算得出b2-c2=$\frac{3}{4}$a2,利用正弦定理,余弦定理的结合三角形得出$\frac{tanB}{tanC}=\frac{sinB}{cosB}•\frac{cosC}{sinC}$=$\frac{b}{c}$$•\frac{\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}}{\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-{b}^{2}}$=$\frac{{a}^{2}+\frac{3}{4}{a}^{2}}{{a}^{2}-\frac{3}{4}{a}^{2}}$=7即可.

解答 解:∵($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=$\frac{3}{4}$${\overrightarrow{BC}}^{2}$,
∴($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$$-\overrightarrow{AB}$)=$\frac{3}{4}$${\overrightarrow{BC}}^{2}$,
$\overrightarrow{AC}$2$-\overrightarrow{AB}$2=$\frac{3}{4}$$\overrightarrow{BC}$2
即b2-c2=$\frac{3}{4}$a2
∵$\frac{tanB}{tanC}=\frac{sinB}{cosB}•\frac{cosC}{sinC}$=$\frac{b}{c}$$•\frac{\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}}{\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-{b}^{2}}$=$\frac{{a}^{2}+\frac{3}{4}{a}^{2}}{{a}^{2}-\frac{3}{4}{a}^{2}}$=7
∴则$\frac{tanB}{tanC}$=7
故答案为:7

点评 本题考察了三角形的性质,平面向量的运用,正弦定理,余弦定理的运用,综合性较大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,MF1的中点A在双曲线上,则双曲线的离心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为增加产品利润,某工厂想投入资金对机器进一步改造升级,经过市场调查,利润增加值y万元与投入x万元之间满足:y=$\frac{41}{40}x-t{x^2}-ln\frac{x}{10}$,x∈(1,m],当x=10时,y=9.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求利润增加值y取得最大时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设有关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从1,2,3三个数中任取的一个数,b是从1,2两个数中任取的一个数,求上述方程在(-4,0)内有两个不等实根的概率.
(Ⅱ)若a是从区间[1,3]任取的一个数,b是从区间[1,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:1<2x<8;q:不等式x2-mx+4≥0恒成立,若¬p是¬q的必要条件,求实数m的取值范围m≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a3=5,a4+a8=22,则{an}的前8项的和为(  )
A.32B.64C.108D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正项等差数列{an}满足a1+a2015=2,则$\frac{1}{a_2}+\frac{1}{{{a_{2014}}}}$的最小值为(  )
A.1B.2C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙两个同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则甲不输的概率为0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,圆x2-2x+y2-2y=0的圆心在直线ax+by=4则ab的最大值是(  )
A.8B.4C.2D.1

查看答案和解析>>

同步练习册答案