精英家教网 > 高中数学 > 题目详情
12.已知点(-3,-1)在直线3x-2y-a=0的上方,则a的取值范围为(  )
A.a>-7B.a≥-7C.a<-7D.a≤-7

分析 若点(-3,-1)在直线3x-2y-a=0的上方,点代入等式左侧小于0,解得答案.

解答 解:若点(-3,-1)在直线3x-2y-a=0的上方,
则3×(-3)-2×(-1)-a<0,
解得:a>-7.
故选:A.

点评 本题考查的知识点是二元一次不等式与平面区域,确定不等号的方向是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知实数a,b∈R+,若a+b=1,那么$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有下列四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“若x+y≠3,则x≠1或y≠2”,
其中真命题有(  )
A.①②B.②③C.①③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=-\frac{1}{1+x}$在x∈[1,+∞)上的值域为(  )
A.$({-∞,-\frac{1}{2}}]$B.$[{-\frac{1}{2},+∞})$C.$[{-\frac{1}{2},0})$D.$[-\frac{1}{2},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是同一个平面α内的两个向量,则(  )
A.平面α内任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
B.若存在实数λ1,λ2,使λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$=0,则λ12=0
C.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则空间任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
D.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则平面任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两等差数列{an}、{bn}的前n项和分别为Sn、Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{7n-2}$,则$\frac{{a}_{10}}{{b}_{10}}$=(  )
A.$\frac{23}{68}$B.$\frac{41}{131}$C.$\frac{21}{61}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题P:对m∈[-1,1],不等式a2-5a-3≥m+2恒成立;命题q:x2+ax+2<0有解,若P∧(¬q)为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列x1,x2,…,xn,…满足x1=$\frac{1}{3}$,xn+1=${{x}_{n}}^{2}$+xn(n∈N•),则$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…+$\frac{1}{{x}_{2013}+1}$的整数部分是2.

查看答案和解析>>

同步练习册答案