【题目】设函数,其中为自然对数的底数.
(1)若曲线在轴上的截距为,且在点处的切线垂直于直线,求实数的值;
(2)记的导函数为, 在区间上的最小值为,求的最大值.
【答案】(1) 的值分别为1, ;(2) .
【解析】试题分析:(1)先利用曲线在轴上的截距为求得,再求导,利用导数的几何意义进行求解;(2)连续求导,得到,再通过分类讨论思想讨论的取值,研究函数在区间的单调性和最小值,得到分段函数,则通过求导确定的最小值.
试题解析:(1)曲线在轴上的截距为,则过点,代入,
则,则,求导,
由,即,则,
∴实数的值分别为1, ;
(2), , ,
①当时,∵,∴恒成立,
即, 在上单调递增,
∴.
②当时,∵,∴恒成立,
即, 在单调递减,
∴.
③当时, ,得, 在上单调递减,在上单调递增,
所以,
∴,
∴当时, ,
当时, ,求导, ,
由时, ,
∴单调通减, ,
当时, ,单调递减, ,
∴的最大值.
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC.
(1)求证:AD⊥平面BCD;
(2)求三棱锥CABD的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.
(1)求甲拿到礼物的概率;
(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合, 交圆于两点,过作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,圆的圆心坐标为,半径为2.以极点为原点,极轴为的正半轴,取相同的长度单位建立平面直角坐标系,直线的参数方程为(为参数).
(1)求圆的极坐标方程;
(2)设与圆的交点为, 与轴的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线, ,则下列说法正确的是( )
A. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 是正三角形, 是等腰三角形, , .
(1)求证: ;
(2)若, ,平面平面,直线与平面所成的角为45°,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com