精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中为自然对数的底数.

(1)若曲线轴上的截距为,且在点处的切线垂直于直线,求实数的值;

(2)记的导函数为 在区间上的最小值为,求的最大值.

【答案】(1) 的值分别为1, ;(2) .

【解析】试题分析:(1)先利用曲线轴上的截距为求得,再求导,利用导数的几何意义进行求解(2)连续求导,得到,再通过分类讨论思想讨论的取值,研究函数在区间的单调性和最小值,得到分段函数,则通过求导确定的最小值.

试题解析:(1)曲线轴上的截距为,则过点,代入

,则,求导

,即,则

∴实数的值分别为1,

(2)

①当时,∵,∴恒成立,

上单调递增,

.

②当时,∵,∴恒成立,

单调递减,

.

③当时, ,得 上单调递减,在上单调递增,

所以

∴当时,

时, ,求导,

时,

单调通减,

时, ,单调递减,

的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC.

(1)求证:AD⊥平面BCD

(2)求三棱锥CABD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, 成等差数列;数列中的前项和为 .

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.

(1)求甲拿到礼物的概率;

(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合, 交圆两点,过的平行线交于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的圆心坐标为,半径为2.以极点为原点,极轴为的正半轴,取相同的长度单位建立平面直角坐标系,直线的参数方程为为参数).

(1)求圆的极坐标方程;

(2)设与圆的交点为 轴的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是正三角形, 是等腰三角形,

(1)求证:

(2)若 ,平面平面,直线与平面所成的角为45°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

1)设讨论的单调性;

2)若函数内存在零点,求的范围.

查看答案和解析>>

同步练习册答案