精英家教网 > 高中数学 > 题目详情

如图,以正四棱锥V-ABCD底面中心O为坐标原点建立直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC的中点,正四棱锥底面边长为2a,高为h.

(1)求

(2)设角∠BCV为α,∠DCV为β,且∠BED是二面角α-VC-β的平面角,求∠BED.

答案:
解析:

解:(1)由题意知,B(a,a,0),C(-a,a,0),

由此得

(2)若∠BED是二面角α-VC-β的平面角,则,即有

易得=(a,-a,h).而

,即


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB;已知VA=kAB,点E是VC的中点,底面正方形ABCD边长为2a,高为h.
(Ⅰ)求COS<
BE
DE

(Ⅱ)当k取何值时,∠BED是二面角B-VC-D的平面角,并求二面角B-VC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•江西)如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB.E为VC中点,正四棱锥底面边长为2a,高为h.
(Ⅰ)求cos<
BE
DE

(Ⅱ)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求cos∠BED的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•江西)如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB.E为VC中点,正四棱锥底面边长为2a,高为h.
(Ⅰ)求cos<
BE
DE

(Ⅱ)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求∠BED.

查看答案和解析>>

科目:高中数学 来源:天津高考真题 题型:解答题

如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC中点,正四棱锥底面边长为2a,高为h,
(Ⅰ)求cos
(Ⅱ)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求cos∠BED的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

20.(甲)如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中OxBC

OyAB.EVC中点,正四棱锥底面边长为2a,高为h.

(Ⅰ)求cos〈〉;

(Ⅱ)记面BCV,面DCV,若∠BED是二面角-VC-的平面角,求cosBED的值.

查看答案和解析>>

同步练习册答案