精英家教网 > 高中数学 > 题目详情
1.已知倾斜角为60°的直线l过点(0,-2$\sqrt{3}$)和椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,且椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

分析 (Ⅰ)求得直线l的方程,求得与x轴的焦点坐标,则c=2,根据椭圆的离心率公式即可求得a的值,由b2=a2-c2=2,代入即可求得椭圆C的方程;
(Ⅱ)设直线l的方程代入椭圆方程根据韦达定理及向量数量积的坐标运算可知:$\frac{y_1}{{{x_1}+2}}•\frac{y_2}{{{x_2}+2}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-1)(m{y_2}-1)}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-m({y_1}+{y_2})+1}}=-1$,即可求得m的值,即可求得直线l的方程.

解答 解:(I)∵直线l的倾斜角为60°,
∴直线l的斜率为k=$\sqrt{3}$,
又∵直线l过点(0,-2$\sqrt{3}$),则直线l的方程为y+2$\sqrt{3}$=$\sqrt{3}$x,…(3分)
∵a>b,
∴椭圆的焦点为直线l与x轴的交点,
∴椭圆的焦点为(2,0),则c=2,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,
∴a=$\sqrt{6}$,b2=a2-c2=2,
∴椭圆方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;…(5分)
(Ⅱ)设直线l的方程为x=my-3,A(x1,y1),B(x2,y2)…(6分)
联立直线与椭圆的方程$\left\{\begin{array}{l}\frac{x^2}{6}+\frac{y^2}{2}=1\\ x=my-3\end{array}\right.$,得(m2+3)y2-6my+3=0,
由韦达定理可知:${y_1}+{y_2}=\frac{6m}{{{m^2}+3}},{y_1}{y_2}=\frac{3}{{{m^2}+3}}$,…(7分)
由题意可知AF1⊥BF1,即${k_{AF}}_1•{k_{B{F_1}}}=-1$…,(8分)
∴$\frac{y_1}{{{x_1}+2}}•\frac{y_2}{{{x_2}+2}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-1)(m{y_2}-1)}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-m({y_1}+{y_2})+1}}=-1$,
整理得:(m2+1)y1y2-m(y1+y2)+1=0…(10分)
∴$\frac{{3({m^2}+1)}}{{{m^2}+3}}-\frac{{6{m^2}}}{{{m^2}+3}}+1=0$,解得:$m=±\sqrt{3}$…(11分)
代入△=36m2-12(m2+3)=24×3-36=36>0,…(12分)
∴直线l的方程为$x+\sqrt{3}y+3=0或x-\sqrt{3}y+3=0$.…(13分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=n(a>b>1,n∈N*),F1,F2是椭圆C4的焦点,A(2,$\sqrt{2}$)是椭圆C4上一点,且$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的离心率并求出C1的方程;
(2)P为椭圆C2上任意一点,直线PF1交椭圆C4于点E,F,直线PF2交椭圆C4于点M,N,设直线PF1的斜率为k1,直线PF2的斜率为k2
(i)求证:k1k2=-$\frac{1}{2}$    
(ii)求|MN|?|EF|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点(2,2)的直线l与圆x2+y2+2x-2y-2=0相交于A,B两点,且$|{AB}|=2\sqrt{3}$,则直线l的方程为(  )
A.3x-4y+2=0B.3x-4y+2=0,或x=2C.3x-4y+2=0,或y=2D.y=2,或x=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知圆C:x2+y2=2,点P为直线$x-y+2\sqrt{2}=0$上任意一点,过点P的直线与圆C交于A,B两点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:$a_n^2={a_{n-1}}•{a_{n+1}}(n≥2)$且a2+2a1=4,$a_3^2={a_5}$.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化分数指数幂:($\root{3}{a}$)2•$\sqrt{a{b}^{3}}$=${a}^{\frac{7}{6}}•{b}^{\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合$P=\left\{{x|{1-\frac{x-1}{3}}|≤2}\right\}\;,\;\;Q=\left\{{x|{x^2}-2x+({1-{m^2}})≤0}\right\}$,其中m>0,全集U=R.若“x∈∁UP”是“x∈∁UQ”的必要不充分条件,则实数m的取值范围为[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<$\frac{π}{2}$),若旋转后的四条线段所围成的封闭图形面积为$\frac{1}{2}$,则α=(  )
A.$\frac{π}{12}$或$\frac{5π}{12}$B.$\frac{π}{12}$或$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{12}$D.$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点,则线段GH的长度的最小值是(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案