精英家教网 > 高中数学 > 题目详情
11.求下列各式的值:
(1)log${\;}_{\frac{1}{3}}$27-log${\;}_{\frac{1}{3}}$9
(2)log2(log216)

分析 直接利用对数的运算法则和对数的性质求解.

解答 解:(1)log${\;}_{\frac{1}{3}}$27-log${\;}_{\frac{1}{3}}$9
=${log}_{\frac{1}{3}}\frac{27}{9}$=${log}_{\frac{1}{3}}3$=-1.
(2)log2(log216)
=log24=2.

点评 本题考查对数式的化简求值,是基础题,解题时要注意对数的运算法则和对数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求函数y=($\sqrt{2}$)${\;}^{\frac{1}{x}}$的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数a、b满足等式($\frac{1}{2}$)a=($\frac{1}{3}$)b,给出下列五个关系式:
①0<b<a;
②a<b<0;
③0<a<b;
④b<a<0;
⑤a=b=0,
其中不可能成立的关系式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,且a+b=2,
(1)求证:$\sqrt{a+1}+\sqrt{b+1}≤2\sqrt{2}$;
(2)求$\frac{2}{a}+\frac{9}{2b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知loga(x1x2…x2006)=4,则logax12+logax22+…+logax20062的值是(  )
A.4B.8C.2D.loga4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)与g(x)定义在R上,f(x)为奇函数,g(x)为偶函数,且有 f(x)+g(x)=$\frac{1}{x-1}$,求f(x),g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个命题中,是正确命题的是(  )
A.y=($\sqrt{2}$)x是指数函数.B.y=2x+1是指数函数
C.y=${2}^{\sqrt{x}}$是指数函数D.y=${2}^{\frac{x}{2}}$是指数函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数中,表示同一个函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{x}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{|x|}$)2
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}•\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{αn}的通项公式an=2n+1(n∈N*),数列{bn}满足bn=$\frac{{a}_{n}}{4}$,求bn的通项公式并分析{bn}是什么数列.

查看答案和解析>>

同步练习册答案