精英家教网 > 高中数学 > 题目详情

【题目】已知命题P:R上定义运算x y=(1-x)y.不等式x1-a)x<1对任意实数x恒成立;命题Q:若不等式≥2对任意的x∈ N*恒成立.P∧ Q为假命题,P∨ Q为真命题,求实数a的取值范围.

【答案】

【解析】

分别求出p、q为真时,实数a的取值范围,通过p∧q为假命题,p∨q为真命题,可知p、q有且只有一个是真命题,分类讨论求出求实数a的取值范围.

由题意知,x (1-a)x=(1-x)(1-a)x,

若命题P为真,(1-a)x2-(1-a)x+1>0对任意实数x恒成立,

∴①当1-a=0即a=1时,1>0恒成立,∴a=1.

当1-a≠0时,

∴-3<a<1.

综合①②得,-3<a≤1.

若命题Q为真,∵x>0,∴x+1>0,

则(x2+ax+6)≥2(x+1)对任意的x∈N*恒成立,

即a≥-+2对任意的x∈N*恒成立,

令f(x)=-+2,只需a≥f(x)max,

∵f(x)≤-2+2=-4+2=-2,

当且仅当x=(x∈N*),即x=2时取等号.

∴a≥-2.

∵P∧Q为假命题,PQ为真命题,

P,Q中必有一个真命题,一个假命题.

若P为真Q为假,则解得- 3<a<-2,

若P为假Q为真,则

∴a>1.

综上可得a取值范围为(-3,-2)∪(1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中:

①线性回归方程 至少经过点(x1,y1),(x2,y2),…,(xn ,yn)中的一个点;

②若变量之间的相关系数为 ,则变量之间的负相关很强;

③在回归分析中,相关指数 为0.80的模型比相关指数为0.98的模型拟合的效果要好;

④在回归直线中,变量时,变量的值一定是-7。

其中假命题的个数是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,若一天中从甲地去乙地的旅客人数不超过900的概率为p0,p0的值为 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3处取得极值,求常数a的值;

(2)若f(x)在(-∞,0)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a﹣2b的值;
(2)讨论函数f(x)的单调性;
(3)设函数g(x)=x2﹣3x+3,如果对于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,且Sn=4an﹣p,其中p是不为零的常数.

(1)证明:数列{an}是等比数列;

(2)当p=3时,若数列{bn}满足bn+1=bn+an(nN*),b1=2,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).

(1)若λ=时,证明:△ABC为直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E,G分别是BC,PE的中点

(1)求证:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.

查看答案和解析>>

同步练习册答案