精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(2)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

(3)利用分层抽样的方法在[0,0.5) [3.5,4) [4,4.5)三组中选取5位居民,再从这5位居民中任意取三人,求这三人恰有两人来自同一组的概率。

【答案】(1)3.6(万);(2)2.9;(3)

【解析】试题分析:本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力. 第一问,由高×组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;第二问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本总数=频数,计算所求人数;第三问,将前6组的频率之和与前5组的频率之和进行比较,得出2.5≤x<3,再进行计算.

试题解析:()由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04

同理,在[0.5,1)[1.5,2)[2,2.5)[3,3.5)[3.5,4)[4,4.5)中的频率分别为0.080.200.260.060.040.02

0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1

解得a=0.30

)由(),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12

由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为

300 000×0.12="36" 000

)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85

而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85

所以2.5≤x<3

0.3×(x–2.5)=0.85–0.73

解得x=2.9

所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 与尺寸 之间满足关系式 为大于 的常数),现随机抽取6件合格产品,测得数据如下:

对数据作了处理,相关统计量的值如下表:

(1)根据所给数据,求 关于 的回归方程(提示:由已知, 的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间 内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据 ,其回归直线 的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似地看出两条平行的直线,江岸的一侧有 两个蔬菜基地,江岸的另一侧点处有一个超市.已知中任意两点间的距离为千米,超市欲在之间建一个运输中转站 两处的蔬菜运抵处后,再统一经过货轮运抵处,由于 两处蔬菜的差异,这两处的运输费用也不同.如果从处出发的运输费为每千米元.从处出发的运输费为每千米元,货轮的运输费为每千米元.

(1)设,试将运输总费用(单位:元)表示为的函数,并写出自变量的取值范围;

(2)问中转站建在何处时,运输总费用最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①样本方差反映的是所有样本数据与样本平均值的偏离程度;

②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;

③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为

④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交。

其中真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用随机模拟的方法可以估计图中由曲线与两直线x=2y=0所围成的阴影部分的面积S①先产生两组0~1的均匀随机数,a=RAND( ),b=RAND( ); 做变换,令x=2ay=2b③产生N个点(xy),并统计落在阴影内的点(xy)的个数,已知某同学用计算机做模拟试验结果,选取了以下20组数据(如图所示),则据此可估计S的值为____

x

y

y-0.5*x*x

0.441414481

1.849136261

1.751712889

1.836710045

0.508951247

-1.177800647

1.389538592

0.999398689

0.033989941

0.745446842

1.542498362

1.264652865

0.981548556

1.928476536

1.446757752

1.87036015

1.287100762

-0.462022784

1.20252176

1.271691664

0.548662372

1.931929493

0.920911487

-0.945264297

0.450507939

1.561663263

1.460184562

1.356178263

1.856227093

0.936617353

0.408489063

1.564834147

1.481402489

0.163980707

0.135034106

0.121589269

1.868152447

0.350326824

-1.394669959

0.252753469

1.287326597

1.255384439

1.253648606

1.872701968

1.086884555

0.679831952

0.140283887

-0.090801854

1.544339084

0.804655288

-0.387836316

1.563089931

0.872844524

-0.348780542

1.17458008

0.867440167

0.177620985

1.057219794

1.791271879

1.232415032

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}n项和为Sn已知S1S2S4成等比数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,是边长为的等边三角形,分别是的中点

)求证:平面

)求证:平面平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某几何体的三视图.

(1)求该几何体外接球的体积;

(2)求该几何体内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本万元,生产与销售均已百台计数,且每生产台,还需增加可变成本万元,若市场对该产品的年需求量为台,每生产百台的实际销售收入近似满足函数

)试写出第一年的销售利润(万元)关于年产量(单位:百台,)的函数关系式:(说明:销售利润=实际销售收入-成本)

)因技术等原因,第一年的年生产量不能超过台,若第一年的年支出费用(万元)与年产量(百台)的关系满足,问年产量为多少百台时,工厂所得纯利润最大?

查看答案和解析>>

同步练习册答案