精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+2(x≤-1)
x2(x>0)

(1)求f(-4)、f(f(-1))的值;
(2)若f(a)=
1
4
,求a的值.
考点:分段函数的应用,函数的值
专题:计算题,函数的性质及应用
分析:(1)由分段函数的表达式,即可得到f(-4);先求f(-1)=1,再求飞(10=1;
(2)分别讨论当a≤-1时,列方程,解得a;再当a>0时,列出方程,解方程,注意前提,最后合并即可.
解答: 解:(1)∵-4<-1
∴f(-4)=-4+2=-2;
又∵-1≤1
∴f(-1)=-1+2=1,
∴f(f(-1))=f(1)=12=1;
(2)∵f(a)=
1
4

∴当a≤-1时,f(a)=a+2=
1
4
a=-
7
4

∴当a>0时,f(a)=a2=
1
4
a=
1
2
或a=-
1
2
(舍去)

综上所述:a的值为-
7
4
1
2
点评:本题考查分段函数及应用,考查分段函数值,应注意各段的自变量的范围,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1) (n∈N*)的直线的斜率为3n-2,则a2+a4+a5+a9的值等于(  )
A、52B、40C、26D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是(  )
A、增函数且最小值是-1
B、增函数且最大值是-1
C、减函数且最大值是-1
D、减函数且最小值是-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1,F2,A为上端点,P为椭圆上任一点(与左、右顶点不重合).
(1)若AF1⊥AF2,求椭圆的离心率;
(2)若P(-4,3)且
PF1
PF2
=0,求椭圆方程;
(3)若存在一点P使∠F1PF2为钝角,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F的直线l和椭圆交于两点A,B,且
AF
=2
FB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在R上处处可导的函数f(x)满足,(x-2)f′(x)<0,且f(1)=f(5),则不等式f(2x-1)>f(1)的解集是(  )
A、(-∞,1)
B、(1,3)
C、(1,2)∪(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x-2

(1)判断f(x)在[3,5]上的单调性,并证明;
(2)求f(x)在[3,5]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=|x|.
(1)作出函数图象;
(2)判断函数的奇偶性;
(3)求函数的零点;
(4)若x∈[-2,1],求函数的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均为非零实数),若f(2014)=6,则f(2015)=
 

查看答案和解析>>

同步练习册答案