精英家教网 > 高中数学 > 题目详情

【题目】甲乙两个班级均为 40 人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为 36 人,乙班及格人数为 24 人.

(1)根据以上数据建立一个22的列联表;

(2)试判断是否成绩与班级是否有关?

参考公式:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

【答案】1)列联表见解析;(2)成绩与班级有关.

【解析】

试题(1)由题意知按学生考试成绩及格与不及格进行统计甲班及格人数为乙班及格人数为,从而做出甲班不及格的人数是和乙班不及格的人数是列出表格,填入数据即可;(2)根据所给的数据,代入求观测值的公式,求出观测值把观测值与临界值比较,得到有的把握认为成绩与班级有关”.

试题解析:(1)2×2列联表如下:

不及格

及格

总计

甲班

4

36

40

乙班

16

24

40

总计

20

60

80

(2)

,所以有99.5%的把握认为“成绩与班级有关系”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,分别为棱的中点,为棱上的一点,且,设点的中点,则点到平面的距离为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为,(为参数,为直线倾斜角).以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)当时,直线的普通方程与曲线的直角坐标方程;

(2)已知点的直角坐标为,直线与曲线交于两点,当面积最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数.

(1)若曲线在点处的切线方程为,求实数的值;

(2)当时,若存在,使成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的方程为:

当极点到直线的距离为时,求直线的直角坐标方程;

若直线与曲线有两个不同的交点,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当a=2,求函数的极值;

(2)若函数有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

1)确定的解析式;

2)判断上的单调性,并用定义证明;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的方程是: ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)设过原点的直线与曲线交于 两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形),整体设计方案要求:内部井字形的两根水平横轴米,两根竖轴米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为米.

(1)若,且两根横轴之间的距离为米,求景观窗格的外框总长度;

(2)由于预算经费限制,景观窗格的外框总长度不超过米,当景观窗格的面积(多边形的面积)最大时,给出此景观窗格的设计方案中的大小与的长度.

查看答案和解析>>

同步练习册答案