分析 (Ⅰ)由题意,12(500-x)(1+0.5x%)≥12×500,即可求x的取值范围.
(Ⅱ)利用生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,建立不等式,即可求a的最大值.
解答 解:(Ⅰ)由题意,12(500-x)(1+0.5x%)≥12×500,
∴x2-300x≤0,
∵x>0,
∴0<x≤300;
(Ⅱ)生产B产品创造利润12(a-$\frac{13}{1000}$x)x万元,设备升级后生产这批A产品的利润12(500-x)(1+0.5x%),
∴12(a-$\frac{13}{1000}$x)x≤12(500-x)(1+0.5x%),
∴a≤$\frac{x}{125}$+$\frac{500}{x}$+$\frac{3}{2}$.
∵$\frac{x}{125}$+$\frac{500}{x}$≥2$\sqrt{\frac{x}{125}•\frac{500}{x}}$=4,当且仅当$\frac{x}{125}$=$\frac{500}{x}$,即x=250时等号成立,
∴0<a≤5.5,
∴a的最大值是5.5.
点评 本题考查利用数学知识解决实际问题,考查学生解不等式的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.55尺 | B. | 0.53尺 | C. | 0.52尺 | D. | 0.5尺 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com