精英家教网 > 高中数学 > 题目详情

【题目】已知四边形为矩形, ,的中点,沿折起,得到四棱锥,的中点为,在翻折过程中,得到如下有三个命题:

平面,且的长度为定值

三棱锥的最大体积为

③在翻折过程中,存在某个位置,使得.

其中正确命题的序号为__________.(写出所有正确结论的序号)

【答案】①②

【解析】

的中点,连接,证明四边形为平行四边形,得出,可判断出命题①的正误;由的中点,可知三棱锥的体积为三棱锥

的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.

如下图所示:

对于命题①,取的中点,连接,则

,由勾股定理得

易知,且分别为的中点,所以,

四边形为平行四边形,

平面平面平面,命题①正确;

对于命题②,由的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,

的中点,则,且

平面平面,平面平面

平面平面

的面积为

所以,三棱锥的体积的最大值为

则三棱锥的体积的最大值为,命题②正确;

对于命题③,的中点,所以,

,且平面

由于平面,事实上,易得

,由勾股定理可得,这与矛盾,命题③错误.

故答案为:①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有( )

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:

1)仅测试2件就找到全部二等品的概率;

2)测试的第2件产品是二等品的概率;

3)到第3次才测试出全部二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O是四边形内一点,判断结论:,则该四边形必是矩形,且O为四边形的中心是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

时,甲走在最前面;

时,乙走在最前面;

,丁走在最前面,当时,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间四边形中, ,且平面平面.

(1)求证:

(2)若直线与平面所成角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中四边形ABCD为矩形,EF分别为PAPD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF异面;直线BE与直线AF异面;直线平面PBC平面平面PAD

其中正确的结论个数为  

A. 4

B. 3

C. 2

D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长度为的线段的两个端点分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线与曲线交于两点,在轴上是否存在定点,使得直线的斜率之积为常数.若存在,求出定点的坐标以及此常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

同步练习册答案