【题目】已知四边形为矩形, ,为的中点,将沿折起,得到四棱锥,设的中点为,在翻折过程中,得到如下有三个命题:
①平面,且的长度为定值;
②三棱锥的最大体积为;
③在翻折过程中,存在某个位置,使得.
其中正确命题的序号为__________.(写出所有正确结论的序号)
【答案】①②
【解析】
取的中点,连接、,证明四边形为平行四边形,得出,可判断出命题①的正误;由为的中点,可知三棱锥的体积为三棱锥
的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.
如下图所示:
对于命题①,取的中点,连接、,则,,
,由勾股定理得,
易知,且,、分别为、的中点,所以,,
四边形为平行四边形,,,
平面,平面,平面,命题①正确;
对于命题②,由为的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,
取的中点,则,且,
平面平面,平面平面,,
平面,平面,
的面积为,
所以,三棱锥的体积的最大值为,
则三棱锥的体积的最大值为,命题②正确;
对于命题③,,为的中点,所以,,
若,且,平面,
由于平面,,事实上,易得,,
,由勾股定理可得,这与矛盾,命题③错误.
故答案为:①②.
科目:高中数学 来源: 题型:
【题目】气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:
(1)仅测试2件就找到全部二等品的概率;
(2)测试的第2件产品是二等品的概率;
(3)到第3次才测试出全部二等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为, , , ,有以下结论:
①当时,甲走在最前面;
②当时,乙走在最前面;
③当时,丁走在最前面,当时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:
直线BE与直线CF异面;直线BE与直线AF异面;直线平面PBC;平面平面PAD.
其中正确的结论个数为
A. 4个
B. 3个
C. 2个
D. 1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长度为的线段的两个端点、分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.
(1)求曲线的方程;
(2)过点且斜率不为零的直线与曲线交于两点、,在轴上是否存在定点,使得直线与的斜率之积为常数.若存在,求出定点的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com