【题目】已知函数.
(1)讨论的单调区间;
(2)当时,证明: .
科目:高中数学 来源: 题型:
【题目】为半椭圆的左、右两个顶点,为上焦点,将半椭圆和线段合在一起称为曲线
(1)求的外接圆圆心的坐标
(2)过焦点的直线与曲线交于两点,若,求所有满足条件的直线的方程
(3)对于一般的封闭曲线,曲线上任意两点距离的最大值称为该曲线的“直径”,如圆的“直径”就是通常的直径,椭圆的“直径”就是长轴的长,求该曲线的“直径”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x,y的方程x2+y2﹣4x+4y+m=0表示一个圆.
(1)求实数m的取值范围;
(2)若m=4,过点P(0,2)的直线l与圆相切,求出直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆.
(1)若过点的直线l与椭圆C恒有公共点,求实数a的取值范围;
(2)若存在以点B(0,2)为圆心的圆与椭圆C有四个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆P恒过定点,且与直线相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆的离心率为是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.
(1)求E的方程;
(2)设过点且斜率为k的直线与椭圆E交于不同的两M、N,且,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S-ABCD的底面是边长为1的正方形,则棱SB垂直于底面.
(1)求证:平面SBD⊥平面SAC;
(2)若SA与平面SCD所成角的正弦值为,求SB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:方程x2+y2﹣4x+m2=0表示圆:q:方程1(m>0)表示焦点在y轴上的椭圆.
(1)若p为真命题,求实数m的取值范围;
(2)若命题p、q有且仅有一个为真,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com