精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (p﹣2)x2+(2q﹣8)x+1(p>2,q>0).
(1)当p=q=3时,求使f(x)≥1的x的取值范围;
(2)若f(x)在区间[ ,2]上单调递减,求pq的最大值.

【答案】
(1)解:由题意知f(x)= x2﹣2x+1,

由f(x)≥1得: x2﹣2x+1≥1,解之得x≤0或x≥4,

所以使f(x)≥1的x的取值范围是{x|x≤0或x≥4};


(2)解:当p>2时,f(x)图象的开口向上,

要使f(x)在区间[ ,2]上单调递减,须有﹣ ≥2,

得p+q≤6,由p>0,q>0知p+q≥2 ,所以2 ≤6,得 pq≤9,

当p=q=3时,pq=9,

所以,pq的最大值为9


【解析】(1)问题转化为解不等式 x2﹣2x+1≥1,解出即可;(2)得到﹣ ≥2,即p+q≤6,由p>0,q>0,结合基本不等式的性质求出pq的最大值即可.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三角形△ABC的三边长构成公差为2的等差数列,且最大角的正弦值为 ,则这个三角形的周长为(
A.15
B.18
C.21
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:{x|x≥﹣2},q:{x|x<3},请写出满足下列条件的x的集合:
(1)p∧q为真;
(2)p真q假;
(3)p假q真.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村投资128万元建起了一处生态采摘园,预计在经营过程中,第一年支出10万元,以后每年支出都比上一年增加4万元,从第一年起每年的销售收入都为76万元.设y表示前n(n∈N*)年的纯利润总和(利润总和=经营总收入﹣经营总支出﹣投资).
(1)该生态园从第几年开始盈利?
(2)该生态园前几年的年平均利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中,说法正确的是(
A.已知命题p和q,若“p∨q”为假命题,则命题p和q中必一真一假
B.命题“?c∈R,方程2x2+y2=c表示椭圆”的否定是“?c∈R,方程2x2+y2=c不表示椭圆”
C.命题“若k<9,则方程“ + =1表示双曲线”是假命题
D.命题“在△ABC中,若sinA< ,则A< ”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn , n∈N* , 求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某流程图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=
B.f(x)=ln( ﹣x)
C.f(x)=
D.f(x)=

查看答案和解析>>

同步练习册答案