精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,四棱锥P—ABCD中,PAABCD,四边形ABCD 是矩形. EF分别是ABPD的中点.若PA=AD=3,CD=.   (1)求证:AF//平面PCE

   (2)求点A到平面PCE的距离;(3)求直线FC与平面PCE所成角的大小。

(2)     (3)


解析:

:解法一:(1)取PC的中点G,连结EGFG,又由FPD中点,则FG//

 

=

 
     又由已知有     ∴四边形AEGF是平行四边形.  

 
        平面PCEEG         4分

   (2)由(1)知点A到平面PCE的距离等于点F到

平面PCE的距离,所以只要求出点F到平面PCE的距离即可。

 

     

       

        又已知得:.

      .   .

           8分             

   (3)由(2)知

       

           12分

解法二:如图建立空间直角坐标系A(0,0,0),P(0,0,3),D(0,3,0),E,0,0),F(0,),C,3,0)             2分                       

 
(1)取PC的中点G,连结EG, 则

,

,又

                4分

   (2)设平面的法向量.

        ,取

        又,故到平面的距离为     8分  

   (3) 

    直线FC与平面PCE所成角的大小为. 12分

练习册系列答案
相关习题

科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得

(Ⅱ)当时,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题

(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.

 ⑴求异面直线PD与AE所成角的大小;

 ⑵求证:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大小..

 

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题

 

(本题满分12分)

如图3,在圆锥中,已知的直径的中点.

(I)证明:

(II)求直线和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题

(本题满分12分)

如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。

   (1)求证:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。

 

查看答案和解析>>

同步练习册答案