精英家教网 > 高中数学 > 题目详情

【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是

(1)若该曲线为椭圆(中心为原点,对称轴为坐标轴)的一部分,设直线过点且斜率是,求直线与该段曲线的公共点的坐标.

(2)若该曲线为抛物线的一部分,求原抛物线的方程.

【答案】(1);(2)=.

【解析】试题分析:本题主要考查椭圆与抛物线方程、直线与圆锥曲线的位置关系.(1) 若该曲线为椭圆的一部分,则焦点在y轴上,原椭圆方程为,求出直线方程,联立椭圆方程求解即可;(2) 若该曲线抛物线的一部分,则可设抛物线方程为: = , 代入,求出a的值即可.

试题解析:

(1)若该曲线为椭圆的一部分,

则原椭圆方程为,

∵直线且斜率为,

∴直线的方程为: ,

,代入,

=,

化简得: =,

解得,

代入,,

故直线与椭圆的公共点的坐标为

(2)若该曲线抛物线的一部分,则可设抛物线方程为: = ,

代入得,

解得: ,

∴原抛物线的方程为=,

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.
(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,左、右焦点分别为

(1)求椭圆的方程;

(2)若直线与椭圆交于A,B两点,与以为直径的圆交于C,D两点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个.从袋子中不放回地随机抽取小球两个,每次抽取一个球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记事件表示“”,求事件的概率;

(2)在区间内任取两个实数,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4sincos x+.

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的单调递增区间;

(2)y=f(x)的图象上所有点的横坐标伸长到原来的2(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,g的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是全等的等腰梯形,其中,且,点的中点,点的中点.

(I)请在图中所给的点中找出两个点,使得这两个点所在直线与平面垂直,并给出证明

(II)求二面角的余弦值;

(III)在线段上是否存在点,使得平面?如果存在,求出的长度,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案