精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为矩形,平面的中点

1)证明:平面

2)证明:平面

3)若三棱锥的体积为,求点D到平面的距离.

【答案】1)证明见详解;(2)证明见详解;(3

【解析】

1)连接,与点,连接,由中位线可得,可得平面

2)由题意可得,又平面可得,可得平面

3)由三棱锥的体积为,可得的长,可计算出的长,可得的值,再由三棱锥的体积为,可得点D到平面的距离.

证明:(1)连接,与点,连接,

由底面为矩形,可得点的中点,又的中点,

所以,, ,所以平面

2)证明: 由底面为矩形,可得,

平面可得,

同时由,平面 , 平面

可得:平面

3)由三棱锥的体积为,设

可得:,可得:

中,,

由(2)的:平面,,

设点D到平面的距离为

可得:

可得:,即点D到平面的距离为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金。

(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)

附:若,则.

(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.

(3)某顾客消费额为元,有两种摸奖方法,

方法一:三次箱内摸奖机会;

方法二:一次箱内摸奖机会.

请问:这位顾客选哪一种方法所得奖金的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx-1,当x=-2时有极值,且在x=-1处的切线的斜率为-3.

(1)求函数f(x)的解析式.

(2)求函数f(x)在区间[-1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】立德中学和树人中学各派一名学生组成一个联队参加一项智力竞赛,这个智力竞赛一共两轮,在每一轮中,两名同学各回答一次题目,已知,立德中学派出的学生每轮中答对问题的概率都是,树人中学派出的学生每轮中答对问题的概率都是;每轮中,两位同学答对与否互不影响,各论结果亦互不影响,求:

(Ⅰ)两轮比赛后,立德中学的学生恰比树人中学的学生答对题目的个数多个的概率;

(Ⅱ)两轮比赛后,记为这两名同学一共答对的题目数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,上顶点为,右焦点为,离心率为的面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴上的两个动点,且,直线分别与椭圆交于两点.

(ⅰ)求的面积最小值;

(ⅱ)证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形,,且.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)当时,求函数在区间上的最大值和最小值;

3)若对任意的,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,垂直于梯形所在的平面,的中点,,四边形为矩形,线段于点.

(1)求证:平面

(2)求二面角的正弦值;

(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.

(1)当直线经过椭圆的右焦点时,求的面积;

(2)①记直线的斜率分别为,求证:为定值;

②求的取值范围.

查看答案和解析>>

同步练习册答案