【题目】在四棱锥中,底面为矩形,平面为的中点
(1)证明:平面;
(2)证明:平面;
(3)若三棱锥的体积为,求点D到平面的距离.
科目:高中数学 来源: 题型:
【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金。
(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)
附:若,则,.
(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.
(3)某顾客消费额为元,有两种摸奖方法,
方法一:三次箱内摸奖机会;
方法二:一次箱内摸奖机会.
请问:这位顾客选哪一种方法所得奖金的期望值较大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+bx2+cx-1,当x=-2时有极值,且在x=-1处的切线的斜率为-3.
(1)求函数f(x)的解析式.
(2)求函数f(x)在区间[-1,2]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】立德中学和树人中学各派一名学生组成一个联队参加一项智力竞赛,这个智力竞赛一共两轮,在每一轮中,两名同学各回答一次题目,已知,立德中学派出的学生每轮中答对问题的概率都是,树人中学派出的学生每轮中答对问题的概率都是;每轮中,两位同学答对与否互不影响,各论结果亦互不影响,求:
(Ⅰ)两轮比赛后,立德中学的学生恰比树人中学的学生答对题目的个数多个的概率;
(Ⅱ)两轮比赛后,记为这两名同学一共答对的题目数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,上顶点为,右焦点为,离心率为,的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若为轴上的两个动点,且,直线和分别与椭圆交于两点.
(ⅰ)求的面积最小值;
(ⅱ)证明:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形与均为菱形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,垂直于梯形所在的平面,为的中点,,四边形为矩形,线段交于点.
(1)求证:平面;
(2)求二面角的正弦值;
(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.
(1)当直线经过椭圆的右焦点时,求的面积;
(2)①记直线的斜率分别为,求证:为定值;
②求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com