精英家教网 > 高中数学 > 题目详情

【题目】如图,DAC的中点,四边形BDEF是菱形,平面平面ABC

若点M是线段BF的中点,证明:平面AMC

求平面AEF与平面BCF所成的锐二面角的余弦值.

【答案】(1)见解析;(2).

【解析】

试题分析:(1)连接. .由四边形为菱形,可证.由平面平面,可证平面.即可证明平面

2)设线段的中点为,连接.易证平面.以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系.求出相应点及向量的坐标,求得平面,平面的法向量.。利用空间向量夹角公式可求得平面与平面所成的锐二面角的余弦值.

试题解析:

(1)连接∵四边形为菱形,且

为等边三角形.

的中点,∴.

,又的中点,

.

∵平面平面,平面平面平面

平面.

平面,∴.

平面.

(2)设线段的中点为,连接.易证平面.以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系.则.

.

设平面,平面的法向量分别为.

.

解得.

,∴.

又由 解得.

,∴.

.

∴平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长均为2,平面平面 的中点.

(1)证明:

(2)若是棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的两个焦点,圆与双曲线位于轴上方的两个交点分别为,若,则双曲线的离心率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且

()证明:无论取何值,总有

()取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底, 为常数).

讨论函数的单调性;

对于函数,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线,,问函数与函数是否存在“分界线”?若存在,求出常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个计算装置有两个数据输入端口I,II与一个运算结果输出端口III,当I,II分别输入正整数时,输出结果记为且计算装置运算原理如下:

I,II分别输入

I输入固定的正整数II输入的正整数增大则输出的结果比原来增大

II输入I输入正整数增大则输出结果为原来的倍.则(1) = 为正整数)(2)1fm1=__,(2)若由fm1)得出fmn),则满足fmn=30的平面上的点(mn)的个数是__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

同步练习册答案