精英家教网 > 高中数学 > 题目详情
7.在等腰直角△ABC中,AC=BC,D在AB边上且满足:$\overrightarrow{CD}=t\overrightarrow{CA}+(1-t)\overrightarrow{CB}$,若∠ACD=60°,则t的值为(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\sqrt{3}-1$C.$\frac{{\sqrt{3}-\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}+1}}{2}$

分析 易知A,B,D三点共线,从而建立坐标系,从而利用坐标运算求解即可.

解答 解:∵$\overrightarrow{CD}=t\overrightarrow{CA}+(1-t)\overrightarrow{CB}$,
∴A,B,D三点共线,
∴由题意建立如图所示坐标系,
设AC=BC=1,
则C(0,0),A(1,0),B(0,1),
直线AB的方程为x+y=1,
直线CD的方程为y=$\sqrt{3}$x,
故联立解得,x=$\frac{\sqrt{3}-1}{2}$,y=$\frac{3-\sqrt{3}}{2}$,
故D($\frac{\sqrt{3}-1}{2}$,$\frac{3-\sqrt{3}}{2}$),
故$\overrightarrow{CD}$=($\frac{\sqrt{3}-1}{2}$,$\frac{3-\sqrt{3}}{2}$),$\overrightarrow{CA}$=(1,0),$\overrightarrow{CB}$=(0,1),
故t$\overrightarrow{CA}$+(1-t)$\overrightarrow{CB}$=(t,1-t),
故($\frac{\sqrt{3}-1}{2}$,$\frac{3-\sqrt{3}}{2}$)=(t,1-t),
故t=$\frac{\sqrt{3}-1}{2}$,
故选:A.

点评 本题考查了平面向量坐标运算的应用,考查平面向量基本定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出5名学生,将这50名学生随机编号1~50号,并分组,第一组1~10号,第二组11~20号,…,第五组41~50号,若在第三组中抽得号码为22的学生,则在第五组中抽得号码为(  )的学生.
A.42B.44C.46D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)当a=0时,设h(x)=f(x)+g(x),求h(x)的单调区间;
(Ⅱ)当x≥1时,f(x)≤g(x)+lnx,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-2,x≤1}\\{-{a}^{x},x>1}\end{array}\right.$,且a≠1在(0,+∞)上是增函数,则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.$(0,\frac{1}{2}]$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y+2=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2017的值为$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆E:$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,点P(0,1)在短轴CD上,且$\overrightarrow{PC}•\overrightarrow{PD}=-2$
(Ⅰ) 求椭圆E的方程及离心率;
(Ⅱ) 设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}•\overrightarrow{OB}+λ\overrightarrow{PA}•\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中错误的是(  )
A.命题“若x=1,则x2+x-2=0”的否命题是假命题
B.命题“存在一个实数x,使不等式x2-3x+4<0成立”为真命题
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ax+(k-1)a-x+k2(a>0,a≠1)是定义域为R的奇函数.
(1)求实数k的值;
(2)当f(1)>0时,求使不等式f(x2+x)+f(t-2x)>0恒成立的实数t的取值范围;
(3)若f(1)=$\frac{3}{2}$,设函数g(x)=a2x+a-2x-2mf(x),若g(x)在区间[1,+∞)上的最小值为-1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$2\sqrt{3}$B.$\frac{2}{3}\sqrt{3}$C.$\frac{4}{3}\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

同步练习册答案