精英家教网 > 高中数学 > 题目详情
18.已知定义在R上的偶函数f(x)在x≥0时,f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),则a的取值范围是
(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

分析 由已知得到f(x)在[0,+∞)上为增函数,从而由f(x)为偶函数及f(a)<f(a-1)得到f(|a|)<f(|a-1|),从而得到|a|<|a-1|,解该不等式即得a的取值范围.

解答 解:∵偶函数f(x)在x≥0时,f(x)=ex+$\sqrt{x}$为增函数,
∴若f(a)<f(a-1),则f(|a|)<f(|a-1|),
即|a|<|a-1|;
∴解得a<$\frac{1}{2}$.
∴a的取值范围是(-∞,$\frac{1}{2}$).
故选:B

点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2x,x∈[2,8],函数g(x)=[f(x)]2-2a•f(x)+3的最小值为h(a).
(1)求h(a);
(2)是否存在实数m,n,同时满足以下条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在棱长为3的正方体ABCD-A1B1C1D1中,M为线段B1C1上的动点,则三棱锥M-BCD1的体积为(  )(参考结论:若一条直线与一个平面平行,则该直线上的动点到此平面的距离是一个定值)
A.3B.$\frac{9}{2}$C.9D.与M点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}中a2=4,a5=32
(1)求数列{an}的通项公式;
(2)记Sn=a1+3a2+…+(2n-1)an,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=|cosx|•sinx,给出下列四个说法,其中正确说法是(  )
A.若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z)B.f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增
C.函数f(x)的周期为πD.f(x)的图象关于点$(-\frac{π}{2},0)$成中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,PA=$\sqrt{3}$,∠BAD=120°,∠ACB=90°.
  (1)求证:BC⊥平面PAC; 
  (2)求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(文)数列{an}的前n项和为Sn,且a1=1,对任意n∈N+,有an+1=$\frac{2}{3}$Sn,则Sn=$(\frac{5}{3})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=8x的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足$∠AFB=\frac{2π}{3}$,过线段AB的中点M作直线l的垂线,垂足为N,则$\frac{|MN|}{|AB|}$的最大值,是(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知奇函数f(x)在定义域(-3,3)上是减函数,且满足f(2x-1)+f(1)<0,则x的取值范围为(0,2).

查看答案和解析>>

同步练习册答案