精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中),.它的最小正周期为,且的最大值为2

1)求的解析式;

2)写出函数的单调递减区间、对称轴和对称中心.

【答案】1;(2)递减区间;对称轴为直线;对称中心

【解析】

1)先把函数化为的形式,则周期,最大值为,再与所给函数的周期,最大值比较,就可得到两个含的等式,根据再得到一个含的等式,就可求出的值,得到的表达式.

2)由(1)中得到的函数的解析式,先化简为,把看成一个整体,就可借助基本正弦函数的单调性,对称轴,对称中心,求出的单调递增区间、对称中心、对称轴方程.

解:(1,其中为辅助角,且

,即

的最大值为2,解得,

所以

2)由(1)得,

,解得,

函数的单调递减区间

,解得

函数的对称中心为

,解得,

对称轴方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|xa|,a<0.

(1)证明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某中学举行了“我爱国学,传诵经典”考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.

(1)若该所中学共有2000名学生,试利用样本估计全校这次考试中优秀生人数;

(2)(i)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间的中点值作代表);

(ii)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人赠送一套国学经典学籍,试求恰好抽中2名优秀生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的方程为(为参数);以原点为极点,以轴正半轴为极轴建立极坐标系,圆的极坐标方程为

(1)求椭圆的极坐标方程,及圆的直角坐标方程;

(2)若动点在椭圆上,动点在圆上,求的最大值;

(3)若射线分别与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中边长AB为2,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,Q为正方形ABCD内一点,M,N分别为AB,BC上靠近A和C的三等分点,若线段与OP相交且互相平分,则点Q的轨迹与线段MN形成的封闭图形的面积为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球比赛采用7局4胜制,即若有一队先胜4局,则此队获胜,比赛就此结束.由于参加比赛的两队实力相当,每局比赛两队获胜的可能性均为.据以往资料统计,第一局比赛组织者可获得门票收入40万元,以后每局比赛门票收入比上一局增加10万元,则组织者在此次比赛中获得的门票收入不少于390万元的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线,直线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.

(1)求直线的直角坐标方程以及曲线的参数方程;

(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,平面 为等腰直角三角形,,的中点,的中点.

(1)求异面直线所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案